RAJASTHAN TECHNICAL UNIVERSITY M.Tech. (Digital Communication)

Teaching & Examination Scheme (Full Time) w.e.f. 2020-21

SN Course Course **Course Name** Teaching Marks Credit Type code Scheme L Т Р Ι Ε Т PCC 3 30 70 3 1MDC1-01 **Digital Communication** 0 0 100 1. system Advanced Digital Signal PCC 1MDC1-02 3 2. 3 0 0 30 70 100 Processing PEC-1 1MDC2-11 High Frequency 3. Electronics 3 1MDC2-12 **Optimization Techniques** 0 0 30 70 100 3 Detection & Estimation 1MDC2-13 Theory Advanced Computer 4. PEC-2 1MDC2-14 Networks 3 0 0 70 100 3 30 Statistical signal processing 1MDC2-15 1MDC2-16 Satellite Communication MCC 5. 1MCC3-21 Research Methodology and 0 30 70 100 2 2 0 IPR PCC 1MDC1-06 **Digital Communication** 60 40 100` 2 6. 0 0 4 System Lab PCC Modelling & Simulation 1MDC1-07 2 7. 0 0 4 60 40 100 Lab 8. SODECA 1MDC5-00 Social Outreach Discipline 50 1 50 & Extra Curriculum Activities Total 750 19

Semester I

1MDC2-12: OPTIMIZATION TECHNIQUES

Course Objective:

- This course introduces the principal algorithms for linear, network, discrete, nonlinear, dynamic optimization and optimal control.
- Emphasis is on methodology and the underlying mathematical structures.
- Modeling of the real-world problem and simulate it.

Topics	Hours
Introduction: Historical development, application to engineering problems, statement	5
of optimization, classification of optimization, examples of optimization problems.	
Linear Programming: Graphical method, simplex method, revised simplex method,	10
Big-M method, 2- phase method, alternate optimal solutions, unbounded LPs,	
degeneracy and convergence, duality in linear programming, sensitivity analysis, dual	
simplex method, Transportation, assignment and other applications.	
Non-Linear Programming: Unconstrained optimization techniques, direct search	10
methods (Fibonacci method, golden section, quadrature and cubic interpolation)	
descent methods, constrained optimization, direct and indirect methods, optimization	
with calculm, kuhn-tucker conditions.	
Dynamic Programming: Multistage decision process, principles of optimality,	5
computational procedures in dynamic programming.	
PID parameters optimization by using these techniques: Particle Swarm Optimization	10
(PSO), Bacteria Foraging Algorithm (BFA), Genetic Algorithm (GA), and Ant colony	
optimization (ACO), Swarm Optimization Method (SMO), Artificial bee colony	
(ABC), grey wolf optimization (GWO), whale optimization algorithm (WOA), Sine	
Cosine algorithm (SCA)	
Total	40

Course Outcomes:

- Understand importance of optimization
- Apply basic concepts of mathematics to formulate an optimization problem
- Analyze and appreciate variety of performance measures for various optimization problems

Reference books:

- 1. Hiller and Lieberman, "Introduction to Operation Research" 7th Edition, Tata McGrawHill, 2000.
- 2. Ravindran Philips and Solberg, "Operation Research Principles and Practice"2nd Edition, Wiley India, 2007.
- 3. Research Papers in PID Parameter Optimization.