Syllabus and Scheme

B.Tech. in Mechanical Engineering

(For students admitted from 2012 to 2016)

SEMESTER-I & II

Scheme of Teaching & Examination for I year B.Tech. I Semester Effective from the Session: 2012 – 2013 (Common to all branches of Engineering)

		T	ımber eachin Hours	ıg	Duration of Theory Paper		M	arks A	Allocatio	n
Sub Code	Subject	L	T	P	(Hours)	Theory	Term Test	Sessio nal	Prac. Exam	Total
101	Communicative English	3	1	-	3	80	20			100
102	Engineering Mathematics-I	3	1	-	3	80	20			100
103	Engineering Physics-I	3	1	-	3	80	20			100
104	Engineering Chemistry	3	1	-	3	80	20			100
105	Basic Electrical & Electronics Engineering	3	-	-	3	80	20			100
	Total	15	04	ı	-	400	100			500
106	Engineering Physics Lab-I	-	-	2		-		45	30	75
107	Engineering Chemistry Lab			2				45	30	75
108	Electrical & Electronics Lab	-	-	2		-		60	40	100
109	Practical Geometry	-	-	3				60	40	100
110	Workshop Practice	-	-	2				60	40	100
111	Discipline & Extra curricular Activities	-	-	-				50	-	50
	Grand Total	15	04	11	-	400	100	320	180	1000

(Total 30 periods per week)

Scheme of Teaching & Examination for I year B.Tech II Semester Effective from the Session: 2012 – 2013 (Common to all branches of Engineering)

		T	umbe each ours Wee	ing Per	Duration of theory		Ma	rks Al	location	ı
Sub Code	Subject	L	Т	P	Paper (Hours)	Theory	Term Test	Sessi onal	Prac. Exam	Total
201	Communication Techniques	2	-	-	3	80	20			100
202	Engineering Mathematics-II	3	1	-	3	80	20			100
203	Engineering Physics-II	2	1	-	3	80	20			100
204	Chemistry & Environmental Engineering	3	1	-	3	80	20			100
205	Engineering Mechanics	3	1	-	3	80	20			100
206	Fundamentals of Computer Programming	3	-	-	3	80	20			100
	Total	16	04	ı	-	480	120			600
207	Engineering Physics Lab-II	-	-	2		ı		30	20	50
208	Chemistry & Environmental Engineering Lab	-	-	2		-		30	20	50
209	Computer programming lab	-	-	2				45	30	75
210	Machine Drawing	-	-	3		-		60	40	100
211	Communication Technique Lab	-	-	2		-		45	30	75
212	Discipline & Extra Curricular Activities	-	-	ı	-	-		50	ı	50
	Grand Total	16	04	11	-	480	120	260	140	1000

(Total 31 periods per week)

 $\dot{\mathbf{L}}$ = Lecture, \mathbf{T} = Tutorial, \mathbf{P} = Practical

101 COMMUNICATIVE ENGLISH

Unit 1

Grammar

- 1. Tenses
- 2. Passive Voice
- 3. Indirect Speech
- 4. Conditional Sentences
- 5. Modal Verbs

Unit 2

Composition

- 1. Dialogue Writing
- 2. Paragraph and Precis Writing
- 3. Report, its importance and Report Writing

Unit 3

Short Stories

- 1. The Luncheon: W.S. Maugham
- 2. How Much Land Does a Man Need?: Leo Tolstoy
- 3. The Last Leaf: O. Henry

Unit 4

Essays

- 1. On the Rule of the Road: A. G. Gardiner
- 2. The Gandhian Outlook: S. Radhakrishnan
- 3. Our Own Civilisation: C.E.M. Joad

Unit 5

Poems

- 1. The Unknown Citizen: W. H. Auden
- 2. The Character of A Happy Life: Sir Henry Wotton
- 3. No Men are Foreign: James Kirkup
- 4. If: Rudyard Kipling

Suggested Readings

- 1. Communication Skills for Engineers and Scientists, Sangeeta Sharma & Binod Mishra, PHI Learning Pvt. Ltd.
- 2. English for Engineers: Made Easy, Aeda Abidi & Ritu Chaudhary, Cengage Learning, (New Delhi)
- 3. A Practical Course for Developing Writing Skills in English, J.K. Gangal, PHI Learning Pvt. Ltd., New Delhi.
- 4. Intermediate Grammar, Usage and Composition, Tickoo, A. E. Subramaniam & P. R. Subramaniam, Orient Longman (New Delhi)
- 5. The Written Word, Vandana R. Singh, Oxford University Press (New Delhi)

- 6. The Great Short Stories edited by D.C. Datta, Ram Narain Lal Publishers (Allahabad)
- 7. Professional Communication, Kavita Tyagi & Padma Misra, PHI Learning Pvt. Ltd., New Delhi.
- 8. "Learn Correct English: Grammar, Usage and Composition" by Shiv K. Kumar & Hemalatha Nagarajan, Pearson (New Delhi).
- 9. "Current English Grammar and Usage with Composition" by R.P. Sinha, Oxford University Press (New Delhi).
- 10. "Grammar of the Modern English Language", by Sukhdev Singh & Balbir Singh, Foundation Books (New Delhi).

102 ENGINEERING MATHEMATICS-I

Unit 1

Differential Calculus: Asymptotes (Cartesian Coordinates Only), Curvature (Cartesian Coordinates Only), Concavity, Convexity and Point of Inflexion (Cartesian Coordinates Only), Curve Tracing (Cartesian and Standard Polar Curves-Cardioids, Lemniscates of Bernoulli, Limacon, Equiangular Spiral).

Unit 2

Differential Calculus: Partial Differentiation, Euler's Theorem on Homogeneous Functions, Approximate Calculations, Maxima & Minima of Two and More Independent Variables, Lagrange's Method of Multipliers.

Unit 3

Integral Calculus: Surface and Volumes of Solids of Revolution, Double Integral, Double Integral by changing into polar form, Areas & Volumes by Double Integration, Change of Order of Integration, Beta Function and Gamma Function (Simple Properties).

Unit 4

Differential Equations: Differential Equations of First Order and First Degree - Linear Form, Reducible to Linear form, Exact Form, Reducible to Exact Form, Linear Differential Equations of Higher Order with Constant Coefficients Only.

Unit 5

Differential Equations: Second Order Ordinary Differential Equations with Variables Coefficients, Homogeneous and Exact Forms, Change of Dependent Variable, Change of Independent Variable, Method of Variation of Parameters.

Suggested Readings

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley 9th Edition.
- 2. Calculus and Analytical Geometry, Thomas and Finney, Narosa Publishing House. New Delhi
- 3. A Text Book of Differential Equations, M.Ray and Chaturvedi, Students Friends & Co. Publisher, Agra.
- 4. Higher Engineering Mathematics, B.V.Ramana, Tata McGraw Hill.

5. Thomas Calculus, Maurice D. Weir, Joel Hass and others, Pearson, 11th Edition.

103 ENGINEERING PHYSICS-I

Unit 1

Interference of light

Michelson's Interferometer: Production of circular & straight line fringes, Determination of wavelength of light, Determination of wavelength separation of two nearby wavelengths.

Newton's rings and measurement of wavelength of light.

Optical technology: Elementary idea of anti-reflection coating and interference filters.

Unit 2

Polarization of light

Plane circular and elliptically polarized light on the basis of electric (light) vector, Malus law.

Double Refraction: Qualitative description of double refraction phase retardation plates, quarter and half wave plates, construction, working and use of these in production and detection of circularly and elliptically polarized light.

Optical Activity: Optical activity and laws of optical rotation, Specific rotation and its measurement using half-shade and bi-quartz devices.

Unit 3

Diffraction of light

Single slit diffraction: Quantitative description of single slit, position of maxima / minima and width of central maximum, intensity variation.

Diffraction Grating: Construction and theory, Formation of spectrum by plane transmission grating, Determination of wavelength of light using plane transmission grating.

Resolving power: Geometrical & Spectral, Raleigh criterion, Resolving power of diffraction grating and telescope.

Unit 4

Elements of Material Science

Bonding in Solids: Covalent bonding and Metallic bonding.

Classification of Solids as Insulators, Semiconductors and Conductors.

Semiconductors: Conductivity in Semiconductors, Determination of Energy gap of Semiconductor.

X-Ray diffraction and Bragg's Law.

Hall Effect: Theory, Hall Coefficient and applications.

Unit 5

Special Theory of Relativity

Postulates of special theory of relativity, Lorentz transformations, relativity of length, mass and time.

Relativistic velocity addition and mass-energy relation, Relativistic Energy and momentum.

Suggested Readings

- 1. Fundamental of Optics, Jenkins and White, Fourth Edition, McGraw Hill.
- 2. Optics, Ajoy Ghatak, Third Edition, Tata McGraw Hill.
- 3. Concept of Modern Physics, A. Baiser, Fifth Edition, McGraw Hill.
- 4. Modern Physics, J. Morrison, Edition 2011, Elsevier.
- 5. Elements of Material Science and Engineering, Van Vlack, Sixth Edition, Pearson.

104 ENGINEERING CHEMISTRY

Unit 1

General Aspects of Fuel: Organic fuels, Origin, classification and general aspects of fossil fuels. Solid fuels, Coal, carbonization of coal, manufacturing of coke by Beehive oven and by product oven method. Liquid fuels, Composition of petroleum, advantages and refining of petroleum. Cracking, reforming, polymerization and isomerization of refinery products. Synthetic petrol, Bergius and Fischer Tropsch process. Knocking, octane number and anti-knocking agents. Gaseous fuels, Advantages, manufacturing, composition and calorific value of coal, gas and oil gas.

Unit 2

Fuels Analyses: Ultimate and proximate analysis of coal, Determination of calorific value of solid and gaseous fuels by bomb and Junker's Calorimeter respectively. Calculations of calorific value based on Dulong's formula. Combustion, requirement of oxygen/ air in combustion process. Flue gas analysis by Orsat's apparatus and its significance.

Unit 3

Polymers: Different methods of classification, basic ideas of polymerization mechanisms. Elastomers: Natural rubber, vulcanization, Synthetic Rubbers viz. Buna-S, Buna-N, Butyl and neoprene rubbers.

New Engineering Materials: Fullerenes: Introduction, properties, preparation and uses. Organic Electronic Materials (including conducting polymers- poly (p-phenylene), polythiophenes, Polyphenylene, vinylenes, polypyroles, polyaniline).

Unit 4

Cement: Definition, Composition, basic constituents and their significance, Manufacturing of Portland cement by Rotary Kiln Technology, Chemistry of setting and hardening of cement and role of gypsum.

Glass: Definition, Properties, Manufacturing of glass and importance of annealing in glass making, Types of silicate glasses and their commercial uses, Optical fiber grade glass.

Unit 5

Refractory: Definition, classification, properties, Requisites of good refractory and manufacturing of refractory. Preparation of Silica and fire clay refractory with their uses. Seger's (Pyrometric) Cone Test and RUL Test

Lubricants: Introduction, classification and uses of lubricants. Types of lubrication. Viscosity & viscosity index, flash and fire point, cloud and pour point, steam emulsification number, precipitation number and neutralization number.

Suggested Readings

- 1. The Chemistry and Technology of Coal, by J G Speigh, CRC Press
- 2. The Chemistry and Technology of Petroleum, by J G Speigh, CRC Press
- 3. Polymer Chemistry: An Introduction, Malcolm P. Stevens, Oxford University Press
- 4. Solid State Chemistry and Its Applications, Anthony R West, John Wiley & Sons
- 5. Lubricants and Lubrications, Theo Mang, Wilfeied, Wiley-VCH
- 6. Hand Book of Conjugated Polymers, Tejre A Skotheim and J. R. Reynolds, CRC Press

105 BASIC ELECTRICAL & ELECTRONICS ENGINEERING

Unit 1

Basic Concepts of Electrical Engineering: Electric Current, Electromotive force, Electric Power, Ohm's Law, Basic Circuit Components, Faraday's Law of Electromagnetic Induction, Lenz's Law, Kirchhoff's laws, Network Sources, Resistive Networks, Series-Parallel Circuits, Node Voltage Method, Mesh Current Method, Superposition, Thevenin's, Norton's and Maximum Power Transfer Theorems.

Unit 2

Alternating Quantities: Introduction, Generation of AC Voltages, Root Mean Square and Average Value of Alternating Currents and Voltages, Form Factor and Peak Factor, Phasor Representation of Alternating Quantities, Single Phase RLC Circuits, Introduction to 3-Phase AC System.

Unit 3

Rotating Electrical Machines; DC Machines: Principle of Operation of DC Machine as Motor and Generator, EMF Equation, Applications of DC Machines.

AC Machines: Principle of Operation of 3-Phase Induction Motor, 3-Phase Synchronous Motor and 3- Phase Synchronous Generator (Alternator), Applications of AC Machines.

IInit 4

Basic Electronics: Conduction in Semiconductors, Conduction Properties of Semiconductor Diodes, Behaviour of the PN Junction, PN Junction Diode, Zener Diode, Photovoltaic Cell, Rectifiers, L, C, & L-C filters, Bipolar Junction Transistor, Field Effect Transistor, Transistor as an Amplifier.

Digital Electronics: Boolean algebra, Binary System, Logic Gates and Their Truth Tables.

Unit 5

Communication Systems: Introduction, IEEE Spectrum for Communication Systems, Types of Communication, Amplitude and frequency Modulation.

Instrumentation: Introduction to Transducers: Thermocouple, RTD, Strain Gauges, Load Cell and Bimetallic Strip.

Introduction and classification of ICs.

Suggested Readings

1. Electrical and Electronic Technology by Edward Hughes et al, Pearson Publication

- 2. Basic Electrical & Electronics Engineering by V. Jagathesan, K. Vinod Kumar & R. Saravan Kumar, Wiley India.
- 3. Basic Electrical & Electronics Engineering by Van Valkenburge, Cengage learning Indian Edition
- 4. Basic Electrical and Electronics Engineering by Muthusubrmaniam, TMH
- 5. Fundamentals of Electrical Engineering by Leonard S. Bobrow, Oxford University Press
- 6. Fundamentals of Electrical and Electronics Engineering by Ghosh, Smarajit, PHI India
- 7. Basic Electrical & Electronics Engineering by Ravish Singh, TMH
- 8. Basic Electronics Engineering by Vijay Baru et al, Dream Tech, New Delhi

106 ENGINEERING PHYSICS LAB-I

- 1. To determine the wave length of monochromatic light with the help of Fresnel's biprism.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the specific rotation of Glucose (Sugar) solution using a polarimeter.
- 4. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 5. To convert a Galvanometer in to an ammeter of range 1.5 amp. and calibrate it.
- 6. To convert a Galvanometer in to a voltmeter of range 1.5 volt and calibrate it.
- 7. To study the variation of a semiconductor resistance with temperature and hence determine the Band Gap of the semiconductor in the form of reverse biased P-N junction diode.
- 8. To study the variation of thermo e.m.f. of iron copper thermo couple withtemperature.
- 9. To determine coherent length and coherent time of laser using He-Ne Laser.

107 ENGINEERING CHEMISTRY LAB

- 1. Proximate analysis of solid fuel.
- 2. Experiments based on Bomb Calorimeter.
- 3. To determine the strength of Ferrous Ammonium sulphate solution with the help of K₂Cr₂O₇ solution.
- 4. To determine the strength of CuSO₄ solution with the help of hypo solution.
- 5. To determine the strength of NaOH and Na₂CO₃ in a given alkali mixture.
- 6. Determination of Na/K/Ca by flame photometer in a given sample.
- 7. Determination of turbidity in a given sample.
- 8. To determine the flash and fire point of a given lubricating oil.
- 9. To determine the viscosity of a given lubricating oil by Redwood viscometer.
- 10. To determine cloud and pour point of a given oil.

108 ELECTRICAL AND ELECTRONICS LAB

Electrical lab

- 1. Assemble house wiring including earthing for 1-phase energy meter, MCB, ceiling fan, tube light, three pin socket and a lamp operated from two different positions. Basic functional study of components used in house wiring.
- 2. Prepare the connection of ceiling fan along with the regulator and vary the speed.
- 3. Prepare the connection of single phase induction motor through 1-Phase Auto-transformer and vary the speed.
- 4. Prepare the connection of three phase squirrel cage induction motor through 3-Phase Autotransformer and vary the speed.
- 5. Prepare the connection of Fluorescent Lamp, Sodium Vapour and Halogen Lamp and measure voltage, current and power in the circuit.

Electronics lab

- 1. Identification, testing and application of Resistors, Inductors, Capacitors, PN-Diode. Zener Diode, LED, LCD, BJT, Photo Diode, Photo Transistor, Analog/Digital Multi- Metres and Function/Signal Generator.
- 2. Measure the frequency, voltage, current with the help of CRO.
- 3. Assemble the single phase half wave and full wave bridge rectifier & the analyse effect of L, C and L-C filters in rectifiers.
- 4. Study the BJT amplifier in common emitter configuration. Measure voltage gain plot gain frequency response and calculate its bandwidth.
- 5. Verify the truth table of AND, OR, NOT, NOR and NAND gates.

109 PRACTICAL GEOMETRY

- 1. (a) Lines, Lettering & Dimension (Sketch Book)
- (b) Scale-representative Fraction, Plan scale, Diagonal Scale, Vernier scales (In sheet) comparative Scale, & scale of chords (Sketch Book)
- 2. (a) Conic Section:-
 - Construction of Ellipse, Parabola & Hyperbola by different methods (In sheet)
 - (b) Engineering curves:-
 - Construction of cycloid, Epicycloids, Hypocycloid and Involutes (In sheet) Archimedean and Logarithmic spiral, (Sketch book)
- 3. (a) Type of Projection, Orthographic Projection: First Angle and third Angle Projection (Sketch Book)
- (b) Projection of Points (Sketch Book)
- (c) Projection of Straight lines, different position of Straight lines, methods for determining True length, true inclinations and Traces of straight lines (Four problems in sheet and three problems in (Sketch Book)
- (d) Projection of Planes: Different positions of Plane lamina like.:- Regular polygon, circle three of planes (Four problems in Drawing sheet and three problems in Sketch Book.)
- 4. (a) Projection of Solids:- Projection of right and regular Polyhedron, Prisms, Pyramids and cone (Four Problem in Drawing sheet and there in Sketch Book.)

- (b) Section of Solids:- Projection of Frustum of a cone and pyramid, Projection of Truncated Solids (like Prism, Pyramid, Cylinder and Cone) in different positions.
- 5. (a) Development of Surfaces:- Parallel line and Radial line method for right, regular solids
 - (b) Isometric Projections:- Isometric Scales, Isometric Axes, Isometric Projection of Solids.

Suggested Readings

- 1. Engineering Drawing Geometrical Drawing P.S.Gill, S.K.Katara & Sons.
- 2. Engineering Drawing, Dhanarajay A Jolhe, Tata McGraw Hill.
- 3. Engineering Drawing, Basant Agarwal & CM Agarwal ,Tata McGraw Hill.
- 4. Engineering Drawing, N.D.Bhatt, Charotar Publishing House Pvt. Ltd.

110 WORKSHOP PRACTICE

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 1. Mould of any pattern
- 2. Casting of any simple pattern

Welding Shop

- 1. Gas welding practice by students on mild steel flat
- 2. Lap joint by gas welding
- 3. MMA welding practice by students
- 4. Square butt joint by MMA welding
- 5. Lap joint by MMA welding
- 6. Demonstration of brazing

Machine Shop Practice

- 1. Job on lathe with one step turning and chamfering operations
- 2. Job on shaper for finishing two sides of a job
- 3. Drilling two holes of size 5 and 12 mm diameter on job used / to be used for shaping
- 4. Grinding a corner of above job on bench grinder

Fitting and Smithy Shop

- 1. Finishing of two sides of a square piece by filing
- 2. Tin smithy for making mechanical joint and soldering of joint
- 3. To cut a square notch using hacksaw and to drill three holes on PCD and tapping

Suggested Readings

- 1. Mechanical Workshop Practice, K.C. John, PHI Learning New Delhi.
- 2. Elements of Workshop Technology Hajra & Choudhary, Media Promoters & Publisher.
- 3. Workshop Technology, W.A.J.Chapman, CBS Publisher & Distributor New Delhi.

111 DISCIPLINE & EXTRA CURRICULAR ACTIVITIES (DECA)

Component – A Discipline: 25 Marks

The marks shall be deducted from this component for those who shall involve themselves in indiscipline/undesirable/Ragging activities or in case of penalty of marks imposed by Standing Disciplinary Committee (SDC) and approved by Head of the Institution concerned subject to a maximum of 25 marks.

Component – B Extra Curricular Activities: 25 Marks

Marks shall be awarded for the participation of students in various Extra Curricular Activities organised by the respective institutions as per the following, subject to a maximum of 25 marks. In case student does not participate in any of the Extra Curricular Activities, he/ she shall be awarded zero(0) marks in DECA - Component B.

- (i) National Cadet Corps (NCC).
- (ii) National Service Scheme (NSS)
- (iii) Scouts & Guide
- (iv) Sports Activities
- (v) Literary Activities & model
- (vi) Cultural Activities
- (vii) Paper Presentation/ Participation in National Conferences/ Seminars/ Workshops etc.
- (viii) Blood Donation
- (ix) Participation in activities of College Annual day Celebration
- (x) Organising/ Participation/ Volunteer in different activities organised by the departments/ institute
- (xi) Organising/ Participation in activities of Students Chapters of ISTE, IE (I), IEEE, IETE, Vivekanand Kendra etc.

201 COMMUNICATION TECHNIQUES

Unit 1

Elements of Communication

- 1. Communication: Meaning, Importance and Process
- 2. Objectives of Communication
- 3. Media and Types of Communication

Unit 2

Basics of Communication

- 1. Verbal and Non-Verbal Communication
- 2. Formal and Informal Channels of Communication
- 3. Qualities of Good Communication

Unit 3

Skills of Communication

- 1. Barriers to Communication
- 2. Professional Communication

3. Interpersonal Communication and methods to improve it

Unit 4

Grammar

- 1. Subject-Verb Agreement (Concord)
- 2. Linking Words (Conjunctions)
- 3. Relative Clauses
- 4. Common Errors

Unit 5

Composition

- 1. Resume Writing
- 2. Business Letter Writing: Sales, Credit, Enquiry, Order, Claim, Complaint, Job Applications, etc.
- 3. E-mail messages
- 4. Telephone Etiquettes

Suggested Readings

- 1. Communication Skills for Engineers and Scientists, Sangeeta Sharma and Binod Mishra, PHI Learning Pvt. Ltd.(New Delhi)
- 2. English Grammar and Composition, Gurudas Mukherjee, Ane Books Pvt. Ltd.(New Delhi)
- 3. Current English Grammar and Usage with Composition, R.P. Sinha, Oxford University Press (New Delhi)
- 4. Effective Technical Communication, M Ashraf Rizvi, Tata McGraw Hill (New Delhi)
- 5. Business Communication, Meenakshi Raman & Prakash Singh, Oxford University Press (New Delhi)
- 6. Professional Communication, Aruna Koneru, Tata McGraw Hills, New Delhi.
- 7. A Practical Course for Developing Writing Skills in English, J.K. Gangal, PHI Learning Pvt. Ltd., New Delhi.
- 8. "Communicative English for Engineers and Professionals", by Nitin Bhatnagar & Mamta Bhatnagar, Pearson (New Delhi).
- 9. "The Ace of Soft Skills", by Gopalswamy Ramesh & Mahadevan Ramesh, Pearson (New Delhi)

202 ENGINEERING MATHEMATICS-II

Unit 1

Coordinate Geometry of Three Dimensions: Equation of a sphere, Intersection of a sphere and a plane, tangent plane, Intersection of two spheres, orthogonality of two spheres, Right circular cone. Right circular cylinder.

Unit 2

Matrices: Rank of a matrix, Rank of matrix by reducing to normal forms, Consistency of systems of linear simultaneous equations and its solution, Eigen values and Eigen vectors, Cayley-

Hamilton theorem (without proof), Diagonalization of matrix.

Unit 3

Vector Calculus: Scalar and vector field, differentiation & integration of vector functions, Gradient, Divergence, Curl and Differential Operator, Line, Surface and volume Integrals.

Unit 4

Application of Vector Calculus: Green's Theorem in a Plane, Gauss's and Stoke's Theorem (without proof) and their Applications.

Fourier Series: Expansion of simple functions in Fourier Series, half range Fourier sine and cosine series, change of interval. Harmonic Analysis.

Unit 5

Differential Equations: Series Solutions of Second Order Linear Differential Equations with Variable Coefficients (Complementary Functions only), Partial Differential Equations of First Order: Lagrange's Form, Standard Forms, Charpit's Method.

Suggested Readings

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley 9th Edition.
- 2. Calculus and Analytical Geometry, Thomas and Finney, Narosa Publishing House N. Delhi.
- 3. A Text Book of Differential Equations, M.Ray and Chaturvedi, Students Friends & Co. Publisher, Agra.
- 4. Higher Engineering Mathematics, B.V.Ramana, Tata Mcgra Hill.
- 5. Mathematics for Engineers, Chandrika Prasad, Prasad Mudranalaya Allahabad.
- 6. Advanced Mathematics for Engineers, Chandrika Prasad, Prasad Mudranalaya Allahabad.

203 ENGINEERING PHYSICS-II

Unit 1

Quantum Mechanics: Compton effect & quantum nature of light, Derivation of time dependent and time independent Schrödinger's Wave Equation, Physical interpretation of wave function and its properties, boundary conditions, Particle in one-dimensional box.

Unit 2

Applications of Schrödinger's Equation, Particle in three-dimensional box and Degeneracy, Barrier penetration and tunnel effect, Tunneling probability, Alpha Decay, Summerfield's Free electron gas model Postulates, Density of energy states, Fermi energy level.

Unit 3

Coherence and Optical Fibres, Spatial and temporal coherence, Coherence length, Coherence time and 'Q' factor for light, Visibility as a measure of coherence, Spatial Coherence and size of the source, Temporal coherence and spectral purity, Optical fiber as optical wave-guide, Numerical aperture, maximum angle of acceptance and applications of Optical Fiber.

Unit 4

Lasers and Holography: Theory of laser action, Einstein's coefficients, Components of a laser, Threshold conditions for laser action; Theory, Design and applications of He-Ne and semiconductor lasers; Holography versus photography, Basic theory of holography, Basic requirement of a holographic laboratory; Applications of holography in microscopy and interferometry.

Unit 5

Nuclear Radiation Detectors, Characteristics of gas filled detectors: general considerations, Constructions, Working and properties of: Ionization chamber, proportional counter, G. M. Counter and Scintillation Counter.

Suggested Readings

- 1. Fundamental of Optics, Jenkins and White, Fourth Edition, McGraw Hill.
- 2. Optics, Ajoy Ghatak, Third Edition, Tata McGraw Hill.
- 3. Quantum Mechanics, Schiff, Third Edition, McGraw Hill.
- 4. Quantum Mechanics, Merzbacher, Third Edition, Wiley India.
- 5. Nuclear Physics: Principles and Applications, John Lilley, Wiley India.

204 CHEMISTRY & ENVIRONMENTAL ENGINEERING

Unit 1

Water: Common Impurities of water Hardness of water, Determination of hardness by Clark's test and complexometric (EDTA) method, Numerical based on hardness and EDTA method, Municipal Water Supply: Requisites of potable water, Steps involved in purification of water, Sedimentation, coagulation, Filtration and Sterilization, Break point chlorination.

Unit 2

Water Treatment: Softening of water, Lime-Soda, Permutit (Zeolite) and Deionization (Demineralization) methods, Boiler troubles their causes, disadvantages and prevention: Formation of solids (Scale and Sludge), Carry over (Priming and Foaming), Corrosion and Caustic, Embrittlement. Numerical problems based on Lime-Soda and Zeolite softening methods.

Unit 3

Basics of Environment: Environmental Pollution, Environmental Acts and Regulations, Environmental Impact Assessment (EIA), Necessity and methodology of EIA. Renewable sources of energy, Potential & present status of renewable sources of energy in India. Functional concepts of Ecology, Basics of species, Ecosystem, Hydrological and chemical cycles, Energy flow in ecosystems. Biodiversity, population dynamics.

Unit 4

Air Pollution, Noise Pollution and Solid Waste Management: Air Pollution, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful effects of noise pollution, control of noise pollution. Global warming, Acid rain, Ozone depletion. Solid Waste

Management, Classification of solid waste, Collection, transportation, treatment, and disposal of solid waste. Economic recovery of solid waste. Sanitary landfill, on site sanitation.

Unit 5

Water Pollution: Water pollution, Harmful effects of water pollution, control of water pollution. Waste water management, Treatment & disposal of wastewater. Reuse and saving in use of water, rain water harvesting.

Corrosion: Definition and its significance. Mechanisms of Chemical (Dry) and Electrochemical (Wet) corrosion. Protection from corrosion, Protective coatings, cathodic protection, sacrificial anode and modification in designs.

Suggested Readings

- 1. Chemistry of water treatment, Samuel Faust & Osman M Aly, CRC Press
- 2. Boilers water treatment. Principles and Practice, Colin Frayne, CRC Press
- 3. Corrosion Understanding the Basic, by Joseph R Davis, ASM International
- 4. Atmospheric pollution, by W Buch, Tata McGraw Hill(TMH)
- 5. Introduction to Environmental Science, by G Tyler Miller and Scott Spoolman, Cengage Learning
- 6. Introduction to Environmental Engineering, by Mackenzie L Davis and David A Cornwell, Tata McGraw Hill(TMH)

205 ENGINEERING MECHANICS

Unit 1

Statics Of Particles and Rigid Bodies: Fundamental laws of mechanics, Principle of transmissibility, System of forces, Resultant force, Resolution of force, Moment and Couples, Varignon's Theorem, Resolution of a force into a force and a couple, Free body diagram, Equilibrium, Conditions for equilibrium, Lami's theorem.

Virtual work: Principle of Virtual Work, Active forces and active force diagram.

Unit 2

Centroid & Moment of Inertia: Location of centroid and center of gravity, Moment of inertia, Parallel axis and perpendicular axis theorem, Radius of gyration, M.I of composite section, Polar moment of inertia, M.I of solid bodies.

Lifting Machines: Mechanical advantage, Velocity Ratio, Efficiency of machine, Ideal machine, Ideal effort and ideal load, Reversibility of machine, Law of machine, Lifting machines; System of Pulleys, Simple wheel and axle, Wheel and differential axle, Weston's differential pulley block, Worm and worm wheel, Single purchase winch crab.

Unit 3

Friction: Types of Friction, Laws of friction, Angle of friction, Angle of repose, Ladder, Wedge, Belt Friction.

Belt Drive: Types of belts, Types of belt drives, Velocity ratio, Effect of slip on Velocity ratio, Length of belt, Ratio of tensions and power transmission by flat belt drives.

Unit 4

Kinematics of Particles and Rigid Bodies: Velocity, Acceleration, Types of Motion, Equations of Motion, Rectangular components of velocity and acceleration, Angular velocity and Angular acceleration, Radial and transverse velocities and accelerations, Projectiles motion on plane and Inclined Plane, Relative Motion.

Kinetics of Particles and Rigid Bodies: Newton's laws, Equation of motion in rectangular coordinate, radial and transverse components, Equation of motion in plane for a rigid body, D'Alembert principle.

Unit 5

Work, Energy and Power: Work of a force, weight, spring force and couple, Power, Efficiency, Energy, Kinetic energy of rigid body, Principle of work and energy, Conservative and Nonconservative Force, Conservation of energy.

Impulse and Momentum: Linear and angular momentum, Linear and angular impulse, Principle of momentum for a particle and rigid body, Principle of linear impulse and momentum for a particle and rigid body, Principle of angular momentum and Impulse, Conservation of angular momentum, Angular momentum of rigid body.

Suggested Readings

- 1. Vector Mechanics for Engineers, Beer and Johnston, Tata McGraw-Hill.
- 2. Engineering Mechanics, Hibbeler, Pearson Education.
- 3. Engineering Mechanics, Meriam and Kraige, John Wiley & Sons.
- 4. Engineering Mechanics, Timoshenko and Young, Tata McGraw-Hill.
- 5. Engineering Mechanics, Shames, Pearson Education.
- 6. Engineering Mechanics, Boresi and Schmidt, CL-Engineering.
- 7. Engineering Mechanics, Andrew Pytel & Kiusalas, Cengage Learning.

206 FUNDAMENTAL OF COMPUTER PROGRAMMING

UNIT - 1

Programming in C: Structure of C Program, Concept of Preprocessor, Macro Substitution, Intermediate code, Object Code, Executable Code. Compilation Process,

Basic Data types, Importance of braces ({ }) in C Program, enumerated data type, Identifiers, Scope of Variable, Storage Class, Constants, Operators & Expressions in C, Type Casting, printf() and scanf() with format specifires, reading single character.

UNIT - 2

Control Statements, Command Line Arguments, Arrays in C, Pointers, Using pointers to represent arrays, Pointer & address arithmetic. Structures, using typedef.

UNIT - 3

Arrays of Structures & pointers, File Handling (fscanf, fprintf, feof, fopen, fclose, fread, fwrite only). Dynamic memory Allocation.

UNIT - 4

Functions in C, Passing Parameters (By value & Reference), using returned data, Passing arrays,

structures, array of structures, pointer to structures etc., passing characters and strings, The void pointer.

UNIT - 5

Stored Program Architecture of Computers, Storage Device- Primary Memory and Secondary Storage, Random, Direct, Sequential access methods. Concept of High-Level, Assembly and Low Level programming languages. Representing Algorithms through flow chart, pseudo code, step by step.

Number System: Data Representation, Concept of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to radix r2. r's and (r-1)'s complement, Representation of alphabets.

Suggested Readings

- 1. Ritchie & Kernighan, The C Programming language, 2nd Ed., PHI.
- 2. Dey & Ghosh, Computer Fundamentals and programming in C, Oxford.
- 3. Kamthane, Programming in C, 2nd Ed., Pearson.
- 4. Schildt, The Complete Reference, 4th Ed., TMH.
- 5. Balaguruswamy, Programming in ANSI C, 5th Ed., TMH.
- 6. V. Rajaraman, Fundamentals of Computers, 5th Ed. PHI, 2011.
- 7. Forouzan et.al, Computer Science, 3rd Ed. Cenage Learning.

207 ENGINEERING PHYSICS LAB-II

- 1. To determine the height of water tank with the help of a Sextant.
- 2. To determine the dispersive power of material of a Prism for Violet Red and yellow colours of Mercury light with the help of a spectrometer.
- 3. To measure the Numerical Aperture of an Optical Fibre.
- 4. To determine the ferromagnetic constants retentivity, permeability and susceptibility by tracing B-H curve using C.R.O.
- 5. To study the Charge & Discharge of a condenser and hence determine time constant (Both current and voltage graphs are to be plotted.
- 6. To determine the high resistance by method of leakage, using a Ballistic galvanometer.
- 7. To verify the expression for the resolving power of a Telescope.
- 8. To determine the specific resistance of the material of a wire by Carey Fosters bridge.
- 9. To determine the specific resistance of the material of a wire by Carey Fosters bridge.

208 CHEMISTRY & ENVIRONMENTAL ENGINEERING LAB

- 1. To determine the hardness of water by HCL method.
- 2. To determine the hardness of water by EDTA method.
- 3. Determination of CO_2 in a water sample.
- 4. Measurement of pH of a given sample by pH-meter.
- 5. To determine free and residual chlorine in a given water sample.
- 6. Measurement of dissolves oxygen in water.
- 7. Measurement of conductivity of a given sample by conductivity meter.

- 8. Measurement of fluoride in water.
- 9. Measurement of nitrate in water.
- 10. Determination of sulphate in water.
- 11. Evaluation of Reverse Osmosis(RO) Process by TDS measurement.

209 COMPUTER PRAGRAMMING LAB

S.No. Concept to be covered in the exercise

- 1. Simple OS Commands, vi editor, compiling program, compiler options, linking libraries.
- 2. Simple input output program, integer, real, character and string. (Formatted & Unformatted), Using Command Line Arguments.
- 3. Conditional statement (if, if-else-if, switch-case)
- 4. Looping & iterations (for, while, do-while, continue, break)
- 5. Using Arrays (one, two and three dimensional)
- 6. Using Structures and Union.
- 7. Program using Function (with and without recursion), passing parameters by value & reference.
- 8. Using pointers.
- 9. File handling.

210 MACHINE DRAWING

Introduction to machine drawing

Dimensioning, locations and placing.

Orthographic projections: First & third angle methods

Sheet 1: Orthographic Projections (3 Problems)

Sheet 2: Sectional Views (3 Problems)

Sheet 3: Riveted joints, lap joints, butt joints, chain riveting, zig-zag riveting

Sheet 4: Screw fasteners, different threads, Nuts & bolts locking devices, set screws,

foundation

Sheet 5: Bearing, Plumber block

Instructions on free hand sketches

List of free hand sketches

- Different type of lines
- Conventional representation of materials
- Screw fasteners
- Bearing: Ball, roller, needle, foot step bearing
- Coupling: Protected type, flange, and pin type flexible coupling
- Welded joints
- Belts and pulleys
- Pipes and pipe joints
- Valves

Suggested Readings

1. Machine Drawing, Lakshminarayan, Jain Brothers.

2. Machine Drawing, N.D.Bhatt, Charotar Publishing House Pvt. Ltd.

211 COMMUNICATION TECHNIQUES LAB

- 1. Phonetic Symbols and Transcriptions
- 2. Word Formation
- 3. Affixes
- 4. Listening and speaking Skills.
- 5. Words often Mis-spelt and Mis-Pronounced
- 6. One Word for Many.
- 7. Synonyms and Antonyms.
- 8. Seminar Presentation.
- 9. Group Discussion.
- 10. Job Interview

Suggested Readings and Packages

- 1. Advanced Manual for Communication Laboratories and Technical Report Writing, D. Sudha Rani, Pearson, (New Delhi)
- 2. A Course in Phonetics and Spoken English, J. Sethi & P.V. Dhamija, PHI Learning Pvt. Ltd. (New Delhi)
- 3. English Language Laboratories: A Comprehensive Manual, Nira Konar, PHI Learning Pvt .Ltd. (New Delhi)
- 4. Communication Skills for Engineers and Scientists, Sangeeta Sharma and Binod Mishra, PHI Learning Pvt. Ltd.(New Delhi).
- 5. Oxford English Learning Package.(With CDs: Headway Series)
- 6. Tata McGraw Hills English Learning Package (With CDs)
- 7. "Oxford Advanced Learners' Dictionary" published by Oxford University Press (New Delhi)

212 DISCIPLINE & EXTRA CURRICULAR ACTIVITIES (DECA)

Component – A Discipline: 25 Marks

The marks shall be deducted from this component for those who shall involve themselves in indiscipline/undesirable/Ragging activities or in case of penalty of marks imposed by Standing Disciplinary Committee (SDC) and approved by Head of the Institution concerned subject to a maximum of 25 marks.

Component – B Extra Curricular Activities: 25 Marks

Marks shall be awarded for the participation of students in various Extra Curricular Activities organised by the respective institutions as per the following, subject to a maximum of 25 marks. In case student does not participate in any of the Extra Curricular Activities, he/ she shall be awarded zero(0) marks in DECA - Component B.

- (i) National Cadet Corps (NCC).
- (ii) National Service Scheme (NSS)

- (iii) Scouts & Guide
- (iv) Sports Activities
- (v) Literary Activities & model
- (vi) Cultural Activities
- (vii) Paper Presentation/ Participation in National Conferences/ Seminars/ Workshops etc.
- (viii) Blood Donation
- (ix) Participation in activities of College Annual day Celebration.
- (x) Organising/ Participation/ Volunteer in different activities organised by the departments/ institute
- (xi) Organising/ Participation in activities of Students Chapters of ISTE, IE (I), IEEE, IETE, Vivekanand Kendra etc.

Rajasthan Technical University, Kota B.Tech. (Mechanical Engineering Scheme)

1																																
	Total		100	100	100	100	100	100		22	75	92	20	92	09	1000	Total		100	100	100	100	100	100		22	20	92	<u> </u>	92	09	1000
Code	Exam		80	80	80	80	80	80		30	30	30	20	30			Exam		80	80	80	80	80	80		30	20	30	30	30		
	N		50	50	20	20	20	20		45	45	45	30	45			¥		20	20	20	20	20	20		45	30	45	45	45		
20	Hrs. / Week	Ь			joe jec					2	2	3	2	3		12	/ Week	Р		sı A	oc	[qn ∋ų]	S			2	2	3	8	7		12
	Contact Hrs.	⊥	ļ		1			1								3	Hrs.	Τ	1	1										į		2
	Cor	_	8	8	3	3	2	က								17		٦	3	8	3	က	3	3		S	ırse	IOC	qı	<i>=</i>		18
	3																4															
Course BOS Mechanical	=	Subject Code Title	3ME1A Mechanics of Solids-I	3ME2A Material Science and Engineering				3ME6A Advanced Engineering Mathematics	Practicals and Sessionals	3ME7A Material Science and Testing Lab	3ME8A Basic Mechanical Engineering Lab	3ME9A Production Practice - I	3ME10A Computer Programming Lab	3ME11A Mechanical Engineering Drawing	3MEDC Discipline & Extra Curricular Activity	Total	SEMESTER IV 4	Subject Code Title	4ME1A Kinematics of Machines	4ME2A Fluid Mechanics & Machines	4ME3A Machining & Machine Tools	4ME4A Design of Machine Elements - I	4ME5A Industrial Engineering	4ME6A I.C. Engines	Practicals and Sessionals	4ME7A Kinematics of Machine Lab	4ME8A Fluid Mechanics Lab	4ME9A Production Practice-II	4ME10A Machine Design Sessional - I	4ME11A Thermal Engineering Lab-I	4MEDC Discipline & Extra Curricular Activity	Total

Rajasthan Technical University, Kota B.Tech. (Mechanical Engineering Scheme)

SEMESTER V	5	5	Hrs.	/Week	l/A	Exam	Total
Subject Code	Title	L	⊥	Ь			
5ME1A	Heat Transfer	3	1		20	80	100
5ME2A	Dynamics of Machines	3	1	sto	20	80	100
SME3A	Measurement & Metrology	3		əļc	20	80	100
SME4A	Quality Assurance and Reliability	3		ηnς	20	80	100
5ME5A	Sociology and Economics for Engineers	3		ιλ _ໃ	20	80	100
5ME6.1A	Computer Aided Design and Graphics			09			
5ME6.2A	Automobile Engg.	3		Ч⊥	20	80	100
5ME6.3A	Statistics for Decision Making						
	Practicals and Sessionals						
SME7A	Heat Transfer Lab		S	ε	22	20	125
SME8A	Dynamics of Machines Lab	4	əs. qı	7	45	30	75
PWE9A	Production Engineering Lab	7	ino	8	09	40	100
5ME10A	Professional Ethics and Disaster Management	int	၁	2	30	20	20
SMEDC	Discipline & Extra Curricular Activity						50
	Total	18	3 2	10			1000
SEMESTER VI	9	9	Hrs.	/Week	l/A	Exam	Total
Subject Code	Title	L	T	Ь			
6ME1A	Design of Machine Elements - II	3			20	80	100
6ME2A	Newer Machining Methods	3		sta	20	80	100
6ME3A	Mechatronics	3		oəļo	20	80	100
6ME4A	Vibration Engineering	3	1	Suk	20	80	100
6ME5A	Steam Engineering	3	-	ιλ _ໃ	20	80	100
6ME6.1A	Non Destructive Evaluation and Testing			0 0 1			
6ME6.2A	Design and Manufacture of Plastic Products	က		壮	20	80	100
6ME6.3A	Maintenance Management						
	Practicals and Sessionals						
6ME7A	Machine Design Sessional -II		S	3	75	20	125
6ME8A	Industrial Engineering Lab-I	ч·	rse sp	2	45	30	75
6ME9A	Mechatronics Lab	, i		2	45	30	75
6ME10A	Vibration Engineering Lab		0	2	45	30	75
6MEDC	Discipline & Extra Curricular Activity						50
	Total	18	2	6			1000
		1	\dashv				
SEMESTER VII	7	7	Hrs.	/ Week	K	Exam	Total

Applicable from Academic Session 2012-13

Rajasthan Technical University, Kota B.Tech. (Mechanical Engineering Scheme)

Subject Code	Title		_	\vdash	۵			
7ME1A	Finite Element Methods		3			20	80	100
7ME2A	Refrigeration & Air-conditioning		3	-	sto	20	80	100
7ME3A	Operations Research		3	1	əjc	20	80	100
7ME4A	Turbomachines		3		ng	20	80	100
7ME5A	Operations Management		3		ιλ _ໃ	20	80	100
7ME6.1A	Micro and Nano Manufacturing				109			
7ME6.2A	Robotics		က		Ч⊥	20	80	100
7ME6.3A	CNC Machines and Programming							
	Practicals and Sessionals							
7ME7A	Thermal Engineering Lab-II		0.	Q:	3	09	40	100
7ME8A	FEM Lab		qŧ	26	3	09	40	100
7METR	Practical Training & Industrial visit			ino	2		100	100
7MEPR	Project-1		_	ດ	2	20		50
7MEDC	Discipline & Extra Curricular Activity							20
	Total		18	2	10			1000
SEMESTER VIII	8	8		Hrs. /	/ Week	N/	Exam	Total
Subject Code	Title		_	⊢	Ь			
8ME1A	Computer Integrated Manufacturing Systems	S	3			20	80	100
8ME2A	Laws for Engineers		3		s;	20	80	100
8ME3A	Power Generation		3	_	ec.	20	80	100
8ME4.1A	Product Development and Launching				[qn ∋ų]			
8ME4.2A	Computational Fluid Dynamics		က		S	20	80	100
8ME4.3A	Total Quality Management							
	Practicals and Sessionals							
8ME5A	CAM Lab		SE		2	45	30	75
8ME6A	CAD Lab		ırse		3	09	40	100
8ME7A	Industrial Engineering Lab - II		าดต		2	45	30	75
8MEPR	Project-2		p q		4	120	80	200
8MESM	Seminar		ξŢ		2	09	40	100
8MEDC	Discipline & Extra Curricular Activity							50
	Total		12	-	13			1000

Index

3ME1A: MECHANICS OF SOLIDS	
3ME2A: MATERIAL SCIENCE AND ENGINEERING	4
3ME3A: ENGINEERING THERMODYNAMICS	5
3ME4A: MANUFACTURING PROCESSES	6
3ME5A: OBJECT ORIENTED PROGRAMMING IN C ++	7
3ME6A: ADVANCED ENGINEERING MATHEMATICS	8
3ME7A: MATERIAL SCIENCE AND TESTING LAB	9
3ME8A: BASIC MECHANICAL ENGINEERING LAB	
3ME9A: PRODUCTION PRACTICE-I	
3ME10A: COMPUTER PROGRAMMING LAB	
3ME11A: MECHANICAL ENGINEERING DRAWING	_
4ME1A: KINEMATICS OF MACHINES	
4ME2A: FLUID MECHANICS & MACHINES	
4ME3A: MACHINING AND MACHINE TOOLS	
4ME4A: DESIGN OF MACHINE ELEMENTS – I	
4ME5A: INDUSTRIAL ENGINEERING	
4ME6A: I.C. ENGINES	
4ME7A: KINEMATICS OF MACHINES LAB	
4ME8A: FLUID MECHANICS LAB	
4ME9A: PRODUCTION PRACTICE-II	
4ME10A: MACHINE DESIGN SESSIONAL-I	
4ME11A: THERMAL ENGINEERING LAB-1	
5ME1A: HEAT TRANSFER	
5ME2A: DYNAMICS OF MACHINES	
5ME3A: MEASUREMENT & METROLOGY	
5ME4A: QUALITY ASSURANCE AND RELIABILITY	
5ME5A: SOCIOLOGY AND ELEMENTS OF ECONOMICS FOR ENGINEERS	
5ME6.1A: COMPUTER AIDED DESIGN AND GRAPHICS	
5ME6.2A: AUTOMOBILE ENGINEERING Error! Bookmark not de	
5ME6.3A: STATISTICS FOR DECISION MAKING	
5ME7A: HEAT TRANSFER LAB.	
5ME8A: DYNAMICS OF MACHINES LAB. – II	
5ME9A: PRODUCTION ENGINEERING LAB	
5ME10A: PROFESSIONAL ETHICS AND DISASTER MANAGEMENT	
6ME1A: DESIGN OF MACHINE ELEMENTS- II	
6ME2A: NEWER MACHINING METHODS	
6ME3A: MECHATRONICS	
6ME4A: VIBRATION ENGINEERING	33
6ME5A: STEAM ENGINEERING	_
	35
6ME6.1A: NON DESTRUCTIVE EVALUATION AND TESTING	
6ME6.1A: NON DESTRUCTIVE EVALUATION AND TESTING6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS	
	36
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS	36 37
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS6ME6.3A: MAINTENANCE MANAGEMENT	36 37 38
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS	36 37 38 38
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS	36 37 38 38
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS	36 37 38 39
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS 6ME6.3A: MAINTENANCE MANAGEMENT 6ME7A: MACHINE DESIGN SESSIONAL-II 6ME8A: INDUSTRIAL ENGINEERING LAB-I 6ME9A: MECHATRONICS LAB 6ME10A: MECHANICAL VIBRATION LAB	36 38 38 39 39
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS 6ME6.3A: MAINTENANCE MANAGEMENT 6ME7A: MACHINE DESIGN SESSIONAL-II 6ME8A: INDUSTRIAL ENGINEERING LAB-I 6ME9A: MECHATRONICS LAB. 6ME10A: MECHANICAL VIBRATION LAB. 7ME1A: FINITE ELEMENT METHODS	36 38 39 39 40
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS 6ME6.3A: MAINTENANCE MANAGEMENT 6ME7A: MACHINE DESIGN SESSIONAL-II 6ME8A: INDUSTRIAL ENGINEERING LAB-I 6ME9A: MECHATRONICS LAB 6ME10A: MECHANICAL VIBRATION LAB 7ME1A: FINITE ELEMENT METHODS 7ME2A: REFRIGERATION AND AIR CONDITIONING	36 38 38 39 39 40
6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS 6ME6.3A: MAINTENANCE MANAGEMENT 6ME7A: MACHINE DESIGN SESSIONAL-II. 6ME8A: INDUSTRIAL ENGINEERING LAB-I. 6ME9A: MECHATRONICS LAB. 6ME10A: MECHANICAL VIBRATION LAB. 7ME1A: FINITE ELEMENT METHODS. 7ME2A: REFRIGERATION AND AIR CONDITIONING. 7ME3A: OPERATIONS RESEARCH	36 38 39 39 40 41 42

7ME6.1A MICRO AND NANO MANUFACTURING	45
7ME6.2A: ROBOTICS	46
7ME6.3A: CNC MACHINES AND PROGRAMMING	47
7ME7A: THERMAL ENGINEERING LAB-II	48
7ME8A: FINITE ELEMENT LAB.	49
8ME1A: COMPUTER INTEGRATED MANUFACTURING SYSTEMS	49
8ME2A: LAWS FOR ENGINEERS	50
8ME3A: POWER GENERATION	51
8ME4.1A: PRODUCT DEVELOPMENT/DESIGN AND LAUNCHING	53
8ME4.2: COMPUTATIONAL FLUID DYNAMICS	53
8ME4.3A: TOTAL QUALITY MANAGEMENT	55
8ME5A: CAM LAB.	56
8ME6A: CAD LAB	56
8ME7A: INDUSTRIAL ENGINEERING LAB-II	57

3ME1A: MECHANICS OF SOLIDS

Max. Marks: 100

TOTAL

40

B.Tech. (Mechanical) 3rd semester

3L+17	Exa	m Hours: 3
UNIT	CONTENTS	CONTACT HOURS
I	Stress and Strain: Elementary definition of stress and strain, stress-strain relationship, elastic, plastic and visco-elastic behavior of common materials in tension and compression test, stress-strain curves, Hooke's law, Poisson's ratio, elastic constants and their relations for an isotropic hookean material, anisotropic and orthotropic materials. Tension, compression, shearing stress and strain, thermal stresses, composite bars, equations of static equilibrium, concept of free body	3
	diagram. Strain energy due to axial loading.	5
77	Members Subjected to Flexural Loads: Theory of simple bending, bending moment and shear force diagrams for different types of static loading and support conditions on beams.	4
П	bending stresses, section modulus and transverse shear stress distribution in circular, hollow circular, I, Box, T, angle sections etc. Strain energy due to bending.	5
III	Principal Planes, Stresses and Strains: Members subjected to combined axial, bending and torsional loads, maximum normal and shear stresses, concept of equivalent bending and equivalent twisting moments, Mohr's circle of stress and strain.	5
	Theories of Elastic Failures: The necessity for a theory, different theories, significance and comparison, applications.	2
	Torsion: Torsional shear stress in solid, hollow and stepped circular shafts, angular deflection and power transmission capacity. Strain energy due to torsional loads.	4
IV	Stability of Equilibrium: Instability and elastic stability, long and short columns, ideal strut, Euler's formula for crippling load for columns of different ends, concept of equivalent length, eccentric loading, Rankine formulae and other empirical relations.	4
v	Transverse Deflection of Beams: Relation between deflection, bending moment, shear force and load, transverse deflection of beams and shaft under static loading, area moment method, direct integration method.	6
	Thin-walled Pressure Vessels: Stresses in cylindrical and spherical vessels	2
	VC00C10	4

TEX	T BOOK	
1	Bansal, R. K., "A Textbook of Strength of Materials Laxmi Publications.	2010
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Timoshenko, S.P., and Gere, J.M., "Mechanics of Materials", 2nd Ed., CBS Publishers	2002
2	Crandall, S.H., Dahl, N.C., and Lardner, T.J., "An Introduction to the Mechanics of Solids", Tata McGraw-Hill	1999
3	Pytel and Kiusalaas, "Mechanics of Materials" Cengage Learning	2011
4	Punmia, Jain and Jain, "Mechanics of Materials", Laxmi Publication	2002
5	Popov, E.P., Nagarajan, S., and Lu, Z. A., "Mechanics of Materials", 2 nd Ed., Prentice-Hall of India	2002

3ME2A: MATERIAL SCIENCE AND ENGINEERING

Max. Marks: 100

B.Tech. (Mechanical) 3rd semester 3L+0T

3L+01		marks: 100 m Hours: 3
		CONTACT
UNIT	CONTENTS	HOURS
	Crystal structure - BCC, FCC and HCP, unit cell, crystallographic	
	planes and directions, miller indices. Crystal imperfections, point, line,	
I	surface and volume defects.	4
1	Frank Reed source of dislocation, Elastic & plastic modes of	
	deformation, Bauschinger's effect, slip & twinning, strain hardening,	
	cold/hot working recovery, re-crystallization and grain growth.	4
	Classification of Engineering Materials: Solidification of metals and of	
	some typical alloys, mechanism of crystallization (I) nuclear formation	
	(ii) crystal growth, general principles of phase transformation in alloys,	
	phase rule and equilibrium diagrams, equilibrium diagram of binary	
	system having complete mutual solubility in liquid state and limited	
	solubility in solid state, binary isomorphous alloy system, Hume-	
II	Rothery rule, binary system with limited solid solubility of terminal	
	phase and in which solubility decreases with temperature and also	
	alloy with a peritectic transformation, equilibrium diagram of a system	5
	whose components are subject to allotropic change.	
	Iron carbon equilibrium diagram, phase transformation in the iron	
	carbon diagram, eutectic, peritectic, eutectoid and peritectoid reactions	_
	and microstructures.	3
	Isothermal transformation diagrams -cooling curves superimposed on	
	Isothermal Transformation diagram, critical cooling rate. (i) Formation	_
	of Austenite from Pearlite (ii) Transformation of Austenite into Pearlite.	4
III	Full annealing, stress relief, spheroidizing – normalizing, hardening and	
	tempering of steel. Hardenability, Jominey end quench test -	
	Austempering, martempering. Case hardening, carburising, nitriding,	4
	cyaniding, carbonitriding. Flame and Induction hardening.	4
	Non-Metallic Materials- Polymers – types of polymer, commodity and	
	engineering polymers – Properties and applications of PE, PP, PS, PVC,	
IV	PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE Polymers.	4
10	Urea and Phenol formaldehydes. Constitution of alloys: Solid solutions - substitutional and interstitial.	- +
	Ferrous and Non Ferrous Metals- Effect of alloying additions on steel	
	(Mn, Si, Cr, Mo, V, Ti & W) - stainless and tool steels – HSLA steel.	4
	Mechanical Properties and Testing: Types of fracture, testing of	т
	materials under tension, compression and shear loads – hardness tests	
	(Brinell, Vickers and Rockwell) Impact test Izod and charpy, fatigue and	
	creep test.	4
	Classification of steels and cast iron constitution and properties. BIS	-
V	standards.	
-	Engineering Ceramics – Properties and applications of Al2O3, SiC,	
	Si3N4, PSZ etc. Fiber and particulate reinforced composites and resin	
	plastics.	
	Introduction to Nano materials- Nano structured materials. Nano	
	clusters & Nano crystals.	4
		40

TEX	т воок	
1	Material Science and Engineering An Introduction, William D.Callister, John Wiley and Sons.	2003
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Material Science, Raghvan V., Prentice Hall India	2012

2	Principles of Material Science and Engineering, William F.Smith, Tata	2008
	McGraw-Hill Publications.	
3	Engineering Physical Metallurgy, Lakhtin Y., Mir Publisher.	
4	Introduction to Engineering materials Tata McGraw-Hill Publications.	2011
5	Engineering materials properties and selection Budinski and Budinski,	2003
	PHI	

3ME3A: ENGINEERING THERMODYNAMICS

Max. Marks: 100

B.Tech. (Mechanical) $3^{\rm rd}$ semester

3L+1T	Exa	m Hours: 3
UNIT	CONTENTS	CONTACT HOURS
	Basic Concepts and definitions of Thermodynamics : System, Surroundings, Property, Energy, Thermodynamic Equilibrium, Process, work and modes of work.	2
I	Zeroth and First Law of Thermodynamics: Zeroth of Thermodynamics, Temperature scale, First law of thermodynamics, First law analysis of some elementary processes. Steady and unsteady flow energy equations.	5
	Second Law of Thermodynamics: Heat engine, Heat pump and refrigerator, Second law of thermodynamics, Equivalence of the Kelvin-Plank and Clausius statements. Reversible and Irreversible Processes, Carnot engine, Efficiency of a Carnot engine, Carnot principle, thermodynamic temperature scale, Clausis Inequality.	4
II	Entropy : Entropy, Calculation of Entropy change, Principle of entropy increase. Temperature-Entropy diagram, Second law analysis of a control volume.	3
	Availability: Available energy, Loss in available energy, Availability Function, Irreversibility.	3
	Thermodynamic Properties of Fluids: Pure substance, Concept of Phase, Graphical representation of p-v-T data, Properties of steam. Steam tables, Mollier chart	4
III	Ideal Gas and Real Gas : Ideal gas, Real gas, Internal energy, enthalpy and specific heats of an ideal gas, equations of state, Dalton's law of partial pressures, Gibbs Dalton law, Thermodynamic properties of gas mixtures.	4
IV	Thermodynamic Relations: Thermodynamic variables, Independent and dependent variables, Maxwell's thermodynamic relations, Thermodynamic relations involving entropy, Thermodynamic relations involving enthalpy and internal energy, Joule-Thomson coefficient, Clapeyron equation.	4
	Power Cycles: Otto cycle, Diesel cycle, Dual cycle, Brayton cycle and Ericsson cycle.	5
v	Vapour power cycle: Rankine cycle, effect of operating conditions on its efficiency, properties of ideal working fluid in vapour power cycle	3
	Reheat cycle, regenerative cycle, bleeding extraction cycle, feed water heating co-generation cycle.	3
	TOTAL	40

TEX	TT BOOK	
1	Nag P.K., Engineering Thermodynamics, Tata Mc-Graw Hill	
REF	ERENCE BOOKS	
		37 C
SN	Name of Authors /Books /Publisher	Year of Pub.
SN 1	Name of Authors /Books /Publisher Chattopadhyay P., Engineering Thermodynamics, Oxford University Press.	

	John Wiley &Sons	
3	Cengel Y.A. and. Boles M.A, Thermodynamics-An Engineering Approach,	2011
	McGraw Hill	
4	Jones J.B.&.Dugan R.E, Engineering Thermodynamics, Prentice Hall of	1996
	India.	
5	Rao Y.V.C., An Introduction to Thermodynamics, Wiley Eastern Ltd.	1993
6	Moran M.J and H.N. Shapiro, Fundamentals of Engineering	1996
	Thermodynamics, John Wiley and Sons	
7	Rogers, Gorden., Engineering Thermodynamics, Pearson Education	1996

3ME4A: MANUFACTURING PROCESSES

B.Tech. (Mechanical) 3rd semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT
		HOURS
I	General Classification and Introduction to Manufacturing processes. Foundry Technology: Casting: Definition and major classification; Casting materials, Patterns: types, material and pattern allowances. Moulding sands; composition, preparation, properties and testing; Grain fineness; moisture content, clay content and permeability test. Core & core prints; Gating system: types, pouring basin, sprue, runner and risers; Melting, pouring and solidification. Principles and method of floor mould casting, shell mould casting, pit	4
	mould and loam mould casting; centrifugal casting, investment casting; Permanent mould casting. Die casting; Slush casting. Casting defects; types, causes and remedy	5
	Forming Processes: Classification; Hot working and cold working; principle, advantages, disadvantages and applications. Forging: Classification, drop forging and press forging methods and use; Forging dies; types, materials.	3
п	Rolling: Characteristics and applications of hot rolling and cold rolling; Extrusion; Work materials and products; Press tool works; Basic principles, system, operations and applications. Shearing; Parting, notching, trimming, nibbling, blanking and piercing, Drawing: wire drawing, tube drawing and deep drawing.	4
	Design of blanks for blanking, piercing and drawing operations. Estimation of forces and power required for shearing and drawing operations. Introduction to Spinning, Bulging, Coining, embossing, cold heading and riveting process; Metal working defects.	4
ııı	Metal Joining Processes : Welding, Brazing and soldering, classification of welding process, Principle, characteristics and applications of gas welding, thermit welding, electrical arc welding; Submerged arc welding; TIG and MIG welding; Resistance welding; Spot welding; Butt welding; Seam welding; Projection welding. Laser beam welding.	4
	Principles and process details of Forge welding; Friction welding; Diffusion welding; Ultrasonic welding. Explosive welding. Welding defects; Types, causes, effects and remedy. Electrodes and Electrode Coatings	4
IV	Powder Metallurgy: Properties of Powder processed materials, Powder manufacturing, mechanical pulverization, sintering, Electrolytic Process, chemical reduction, atomization, properties of metal powders, compacting of powders sintering, advantages and applications of	_
	Powder metallurgy. Rapid Prototyping Operations: Introduction, subtractive processes, additive processes, Virtual Prototyping and applications	3
v	Plastic Technology: Classification of Plastics, Ingredients of Moulding	3

compounds, General Properties of Plastics,	
Plastic part manufacturing processes such as compression moulding,	
transfer moulding, injection moulding, extrusion moulding, blow	
moulding, calendaring, thermoforming, slush moulding, laminating.	3
TOTAL	40

TEX	TT BOOK	
1	Rao.P.N., Manufacturing Technology, Vol. 1,2 and 3, Tata McGraw Hill	2013
REF	PERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Ghosh, A., & Mallik, A. K. 1986. Manufacturing Science: Ellis Horwood.	
2	Schey, Introduction to Manufacturing Processes, Tata McGraw Hill	1999
3	Kalpakjian, S., & Schmid, S. R., Manufacturing processes for engineering materials, Pearson Education.	2000
4	Campbell, J. S. Principles of manufacturing materials and processes: Tata McGraw-Hill	2008
5	Heine, R.W., Loper, C.R., and Rosenthal, P.C., "Principles of Metal casting", Tata McGraw Hill.	1999
6	Groover, M.P., Fundamentals of Modern Manufacturing: Materials, Processes and systems, Prentice Hall, New Jersey	1976
7	Kalpakjian, S. & Schmid S.R, Manufacturing Engineering and Technology, Addison Wesley Longman	2007
8	Little, R.L., Welding and welding technology Tata McGraw-Hill Education	2000
9	Shan, H.S., Manufacturing Process, Pearson Education.	1973

3ME5A: OBJECT ORIENTED PROGRAMMING IN C ++

B.Tech. (Mechanical) 3rd semester Max. Marks: 100
2L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
I	Introduction to Object Oriented Programming: Basic concepts: Class, Object, Method, Message passing, Inheritance, Encapsulation, Abstraction, Polymorphism.	2
	Basics of C++ Environment: Variables; Operators; Functions; user defined, passing by reference, passing an array to the function, inline function, scope, overloading;	3
II	Pointers: objects and lvalue, arrays and pointers, the new and delete operators, dynamic arrays, arrays of pointers and pointers to arrays, pointers to pointers and functions;	3
	Strings: String I/O, character functions in ctype.h, string functions in string.h.	2
	Object oriented concepts using C++: Classes: Member functions, Friend functions, Constructors, Access functions, Private member functions, class destructor, static data and function members;	2
Ш	Overloading: inline functions, this operator, overloading various types of operators, conversion operators; the String Class; Composition and Inheritance: Hierarchy and types of inheritance, protected class members, private versus protected access, virtual functions and	8
	polymorphism, virtual destructors, abstract base classes. Templates and Iterators: function and class templates, container classes, subclass templates, iterator classes;	3
IV	Libraries: standard C++ library, contents of a standard C headers, string streams, file processing: Files and streams classes, text files, binary files, classification of files, the standard template library.	2
v	Data Structures Using C++: Linked lists - Singly linked list, Doubly linked lists, Circular lists,	3

Stacks and Queues priority Queues, Stacks, Queues.	2
TOTAL	25

TEX	TT BOOK	
1	Balaguruswamy E.: Object Oriented Programming in C++ , McGraw Hill Education (India)	2007
REF	PERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Sahay: OBJECT ORIENTED PROGRAMMING WITH C++, Oxford	2006
2	Hubbard, John., Programming with C++, McGraw Hill Education (India)	2006
3	Rambaugh James etal, "Object Oriented Design and Modelling", PHI.	
4	Budd, Timothy, "An Introduction to Object Oriented Programming", Pearson Education	2008
5	Venugopal, K.R., Mastering C++, McGraw Hill Education (India)	1997
6	Ravichandra, D., Programming with C++, McGraw Hill Education (India)	2007

3ME6A: ADVANCED ENGINEERING MATHEMATICS

B.Tech. (Mechanical) 3rd semester

3L+1T Exam Hours: 3 CONTACT UNIT CONTENTS HOURS Fourier transform: Discrete and Fast Fourier transforms, Complex form of Fourier transform and its inverse, Fourier sine and cosine transform and their inversion. Properties of F-transform, Convolution theorem for I F-transform, Parse Val's identity for F-transforms. 5 Applications of Fourier transform: Applications of Fourier transform for the solution of partial differential equations having constant coefficients with special reference to heat equation and wave equation. 3 Laplace Transform: Laplace transform, Inverse transform, properties, Transforms of derivatives and integrals, Unit step function, Dirac's 5 delta function, Differentiation and integration of transforms. II Applications of Laplace Transform: Applications of Laplace Transform to the solution of ordinary and partial differential equations having constant coefficients with special reference to the wave and diffusion 4 equations. Probability: Basic Concepts of probability, Conditional Probability, Baye's Theorem. 4 Ш Random Variable and distributions: Discrete and continuous random variable, Moments, Expectation, Moment generating function, Binomial, Poisson and Normal distribution. 6 Numerical Analysis –I: Finite differences, Difference operators: forward, Backward, central and average operators. Newton's forward and ΙV backward interpolation formula, Stirling's central difference formula Lagrange's interpolation formula for unequal interval. 6 Numerical Analysis –II: Numerical differentiation, Numerical integration trapezoidal rule, Simpson's one third and three eight rule. Numerical v solution of ordinary differential equation of first order: Picard's method, Euler's, and modified Euler's, method, Milne's methods and Runga Kutta fourth order method. TOTAL 40

TEX	кт воок	
1	Y. N.Gaur and C.L. Koul, Advanced Engineering Mathematics, Jaipur Publishing House, Jaipur.	2003
2	Keyszig E., Advanced Engineering Mathematics, Wiley Eastern Publication	2006

Max. Marks: 100

REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Chandrika Prasad, Mathematics for Engineers, Prasad Mudralaya	
2	Jeffrey, Advanced Engineering Mathematics, ELSEVIER	2001
3	Grewal B. S., Higher engineering Mathematics, Khanna Publication, New Delhi	2000
4	Peter V. O. Neil, Advanced Engineering mathematics, Thomson Publication	2011
5	Gerald, C.F., and Wheatley, P.O., Applied Numerical Analysis, Addison Wesley.	1980
6	Jain, M.K., Iyengar, S.R. and Jain, R.K., Numerical Methods for Scientific and Engineering Computation, Wiley Eastern.	2004
7	Kandasamy, P., Thilagavathy, K., and Gunavathy, S., Numerical Methods, S Chand and Company.	1999
8	J. Douglas Faires, Richard L. Burden, Numerical Methods, Cengage Learning.	2013
9	Dr. Gokhroo, Higher Engineering Mathematics III, Unique Books, Ajmer	

3ME7A: MATERIAL SCIENCE AND TESTING LAB.

B.Tech. (Mechanical) 3rd Semester Max. Marks: 75 0L+0T+2P Exam Hours: 2

OLT	UI+ZP EX	im Hours: 2
SN	NAME OF EXPERIMENT	CONTACT HOURS
1	(a) Study of various crystals structures through models BCC, FCC, HCP,	
	tetrahedral and octahedral voids.	
	(b) Material identification of, say, 50 common items kept in a box.	
2	Specimen preparation for metallographic examination /micro structural	
	examination-cutting, grinding, polishing, etching.	
3	Comparative study of microstructures of different given specimens (mild	
	steel, gray C.I., brass, copper etc.)	
4	Heat treatment experiments such as annealing, normalizing, quenching,	
	case hardening and comparison of hardness before and after.	
5	Study of Microstructure and hardness of steel at different rates of	
	cooling. Microstructure examination of white cast iron.	
6	To perform Tensile/Compressive/Shear/torsion test on a given material	
	and to determine its various mechanical properties under	
	tensile/compression/Shear/torsional loading	
7	To determine Rockwell/ Vickers/Brinell hardness of a given material	
8	To perform Impact test on a given material and to determine its	
	resilience.	
9	To study and perform Fatigue test on a given material and to determine	
	fatigue strength of the material	
10	To perform Bending test and to determine the Young's Modulus of	
	Elasticity via deflection of beam.	
11	Creep testing on creep testing machine	

REF	REFERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Vander Voort, Metallography: Principles and Practice, McGraw-Hill, 1984	
2	Prabhudev K.H., Handbook of Heat Treatment of Steels, Tata McGraw-Hill, 2000	
3	Suryanarayanan, A.V.K. "Testing of Metalic materials" TataMcGraw Hill, 1993	

	3ME8A: BASIC MECHANICAL ENGINEERING LAB					
B.Tech. (Mechanical) 3 rd Semester Max		k. Marks: 75				
OL+OT+2P		Exa	am Hours: 2			
SN	LABORAT	ORY WORK	CONTACT HOURS			
	through a variety of activities, it disassembly of machines, such as engines, air-conditioners, machine- study of complex systems via cut s	lications of mechanical engineering including hands-on assembly and it, bicycle, sewing machine, pumps, tools, amongst others; observational ections, visits, videos and computer le machines/systems including industries.				
	Note: Student will be required to su learning achieved by Hands on asse					

	3ME9A: PRODUCTION PRACTICE-I				
В.Те	B.Tech. (Mechanical) 3 rd Semester Max. Marks: 7				
OL+OT+3P Ex		am Hours: 3			
SN	NAME OF EXPERIMENT	CONTACT HOURS			
	Machine Shop				
1	To study lathe machine construction and various parts including attachments, lathe tools cutting speed, feed and depth of cut.				
2	To perform step turning, knurling and chamfering on lathe machine as per drawing.				
3	To perform taper turning (a) by tailstock offset method as per drawing (b) Using compound rest.				
4	To prepare the job by eccentric turning on lathe machine.				
5	To study shaper machine, its mechanism and calculate quick return ratio. To prepare a job on shaper from given mild steel rod.				
	Foundry Shop				
6	To prepare mould of a given pattern requiring core and to cast it in aluminium.				
7	To perform moisture test and clay content test.				
8	Strength Test (compressive, Tensile, Shear Transverse etc. in green and dry conditions) and Hardness Test (Mould and Core).				
9	To perform permeability test				
10	A.F.S. Sieve analysis test.				
	Welding Shop				
11	Hands-on practice on spot welding.				
12	Hands-on practice on submerged arc welding				
13	Hands-on practice on metal inert gas welding (MIG) and tungsten inert gas welding (TIG).				

	3ME10A: COMPUTER PROGRAMMING LAB.					
B.Tech. (Mechanical) 3 rd Semester Max		. Marks: 50				
OL+0	OL+OT+2P Exa		m Hours: 2			
SN	LABORATORY WORK		CONTACT HOURS			
	List of Programs in C++					
1	Program using basic I/O and contr	ol statements.				

2	Program using class, objects, objects as function parameters.	
3	Program using functions and passing reference to a function, inline	
3	functions. Program using	
4	Inheritance and virtual base class.	
5	Program using pointers, arrays, dynamic arrays. Program using	
3	functions defined in ctype.h and string.h.	
6	Program using constructors, destructors. Program using function and	
0	operator over Loading	
	List of program in C++ implementing Data Structures.	
7	Creating and managing (add, delete, print, insert) nodes of a Linked list	
8	Creating and managing (create, pop, push etc.) stacks and queues.	
	Note: Students should submit and present a minor project at the end of	
	the lab.	

3ME11A: MECHANICAL ENGINEERING DRAWING

B.Tech. (Mechanical) 3rd semester Max. Marks: 75 0L+0T+3P Exam Hours: 3

OLTO	-UT+3P Exa	
SN	CONTENTS	CONTACT HOURS
	Review of sectioning, Review of BIS Standard (SP 46), Fasteners – screws, bolts and nuts, riveted joints, pins, locking devices, welded joints, pipe joints, unions and valves. Assemblies involving machine elements like shafts, couplings, bearing, pulleys, gears, belts, brackets. Tool drawings including jigs and fixtures. Engine mechanisms-assembly and disassembly. Production drawings - limits, fits and tolerances, dimensional and geometric tolerances, surface finish symbols. Layout drawings. Schematics, process and instrumentation diagrams, piping drawings. Structural drawings - examples for reading and interpretation. Computer aided design and use of software packages for engineering drawings	
	Assembly Drawing with sectioning and bill of materials Universal Coupling, Forming punch and die, Jigs for inspecting shaft etc.(1 drawing sheet of any assembly) Lathe tail stock, shaper tool head, steam stop valve, feed check-valve, swivel machine vice etc (1 drawing sheet of any assembly)	
	Detailed part drawings from assembly drawing indicating fits, tolerances and surface finish symbols by referring BIS codes (1 drawing sheet) Check-valve, Junction Valve etc.	
	Computer Aided Drafting (4 drawings) Introduction, input, output devices, introduction to software like AutoCAD/ProE/ Creo/Solidworks, basic commands and development of 2D and 3D drawings of simple parts	
	Free Hand Sketches : Connecting rod, crank shaft, Pipes and Pipe fittings, machine arbor and cutter, universal dividing head, jigs and fixtures, Step less drive, sliding gear box, safety valve, three way stop valve, blow-off cock, Swivel bearing, Turret Tool Post, drill-press vice, screw jack	

TE	KT BOOK	
1	Laxminarayan and M.L. Mathur, Machine Drawing ,Jain Brothers	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Gill P S, Machine Drawing, Kataria & Sons	2009
2	Basudeb Bhattacharya, Machine Drawing, Oxford University Press	2011
3	Dhawan, R.K., A Text Book of Machine Drawing, S. Chand & Company, 1996.	1998

4	Ostrowsky, O., Er	ıgin	eering Draw	ing wit	h CAD Ap	plications,	ELBS, 1995.	1995
5	Siddeshswar N.,	P	Kannaiah,	VVS	Shastry,	Machine	Drawing,Tata	
	McGraw Hill							

4ME1A: KINEMATICS OF MACHINES

B.Tech. (Mechanical) 4th semester

Max. Marks: 100 3L+1T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
-	Kinematics: Elements, pairs, mechanisms, four bar chain and its inversions,	3
I	velocity and acceleration, Klein's construction, coriolis component, instantaneous center method	5
	Synthesis of mechanisms, pantograph, scott-Russel, Tchbeicheff straight line, indicator diagram mechanisms	5
II	Automotive vehicle mechanisms: Overhead valve mechanism, Davis and Ackerman steering mechanism, Trifler suspension and Hooke's joint.	3
	Power transmission: Belts and ropes, effect of centrifugal force, creep, chain drive	4
Ш	Friction: Laws of static, dynamic and rolling friction, dry and viscous friction, inclined plane and screw jack, pivots and friction axis, bearing, Theory of film lubrication.	4
IV	Brakes: Band, block and band & block brakes, braking action, braking system of automobiles. Clutches	6
1 V	Dynamometers: absorption and transmission type dynamometers, prony, rope and hydraulic dynamometers	2
v	Cams: Type of cams, displacement, velocity and acceleration curves for different cam followers consideration of pressure angle and wear,	
	analysis of motion of followers for cams with specified contours.	8
	TOTAL	40

TEX	T BOOK	
1	Rattan, S.S., "Theory of Machines", 2nd Ed., Tata McGraw Hill	2006
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Bevan, T., "Theory of Machines", Pearson Education.	2013
2	Uicker, J.J., Pennocle, G.R, and Shigley, J.E, "Theory of Machines and Mechanisms", 3rd Ed., Oxford University Press.	2009
3	Ambekar , A. G., "Mechanism And Machine Theory", Prentice-hall Of India	2007
4	Ghosh, A., "Theory of Mechanisms and Machines", Affiliated East West Press.	
5	Singh, S., "Theory of Machines", Pearson Education	2013

4ME2A: FLUID MECHANICS & MACHINES

B.Tech. (Mechanical) 4th Semester 3L+1T

Max. Marks: 100 Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
	Fluid Properties : Definition of a fluid, Viscosity-dynamic and kinematic, Surface Tension.	3
1	Fluid Statics: Basic equation of fluid statics, Manometers, Force on plane areas and curved surfaces, center of pressure, Buoyant force,	5

	Stability of floating and submerged bodies.	
п	Fluid flow concepts and Basic control volume equations : General control equation, conservation of mass, energy equation and its application, Momentum equation and its applications	4
11	Basic governing differential equation : Reynolds transport equation, continuity equation, momentum equation, energy equation, Bernoulli's equation.	4
	Viscous flow: Laminar flow through pipe and between parallel plate.	4
III	Turbulent flow: Relation, Prandle mixing length, Losses in open and closed conduit	4
***	Measurements:Pressure, velocity, flow measurement-orifices, venturimenter, orificemeter, nozzle meter, notches and weirs.	3
IV	Flow through pipe: Major and minor Losses in pipe, Hydraulic and energy gradient line, Network of pipes-series and parallel.	5
v	Hydraulic Turbines: Classification of hydraulic turbines, work done and efficiencies of Pelton, Francis and Kaplan turbines, Draft tube, Specific speed and unit quantities	5
	Hydraulic systems: Hydraulic press, Hydraulic accumulator, Hydraulic Intensifier, Hydraulic Ram, Hydraulic lift, Hydraulic coupling, Hydraulic torque convertor Gear pump.	3
	TOTAL	40

TEX	TT BOOK	
1	Yunus A. Cengel and Cimbala, Fluid Mechanics, Tata McGrawHill,	2006
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Streeter V.L., K.W. Bedford and E.B.Wylie , Fluid Mechanics , Tata McGraw Hill	2010
2	Robert W. Fox and Alan T. McDonald, Introduction to Fluid Mechanics, John Wiley & Sons.	2009
3	Potter, Mechanics of Fluids, Cengage Learning.	2012
4	Frank M. White, Fluid Mechanics, Tata McGraw Hill.	2003
5	John F. Douglas, Fluid Mechanics, Pearson Education.	2007
6	Munson, B. R., Young, D. F., & Okiishi, T. H. Fundamentals of Fluid Mechanics, Wiley	
7	Som, S. K., & Biswas, G. Introduction to fluid mechanics and fluid machines, Tata McGraw Hill.	2010
8	K.Subramaanya, Hydraulic Machines, McGrawhill,	2013
9	Modi and Seth, Fluid Mechanics and Hydraulic Machinery, Standard Book House	1991

4ME3A: MACHINING AND MACHINE TOOLS

B.Tech. (Mechanical) 4th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
	Classification of metal removal process and machines: Concept of	
	generatrix and directrix Geometry of single point cutting tool and tool	
	angles, tool nomenclature in ASA, ORS, NRS and interrelationship.	
	Concept of orthogonal and oblique cutting.	4
I	Mechanism of Chip Formation: Type of chips. Mechanics of metal	
	cutting; interrelationships between cutting force, shear angle, strain	
	and strain rate. Various theories of metal cutting. Thermal aspects of	
	machining and measurement of chip tool interface temperature.	
	Friction in metal cutting. Introduction to tool geometry of milling	4

	cutters and drills.	
l II	Concept of machinability, machinability index, factors affecting machinability, Different mechanism of tool wear. Types of tool wear (crater, flank etc), Measurement and control of tool wear, Concept of tool life,	4
11	Taylor's tool life equation (including modified version). Different tool materials and their applications including effect of tool coating. Introduction to economics of machining. Cutting fluids: Types, properties, selection and application methods	4
III	Basic machine tools: Constructional configuration, specifications and estimation of machining time on lathe, drilling, shaping, milling, grinding and broaching machine.	4
111	Special Purpose Machine Tools: Automatic lathes, capstan and turret lathe machines, operational planning and turret tool layout, sequence of operations.	4
IV	Introduction to Grinding-Need and different methods of grinding, Abrasives; natural and synthetic, manufacturing and selection of grinding wheels, Wheel specifications, mounting and dressing. Surface finishing: Honing, lapping, super-finishing, polishing and buffing.	6
	Thread Manufacturing: casting; thread chasing; thread cutting on lathe; thread rolling, die threading and tapping; thread milling and thread grinding.	3
v	Gear Manufacturing Processes: hot rolling; stamping; powder metallurgy; extruding etc. Gear generating processes: gear hobbling, gear shaping. Gear finishing processes: shaving, grinding, lapping, shot	
	blasting, phosphate coating, Gear testing. High Velocity Forming Methods: Definition; Hydraulic forming, Explosive forming, Electro-hydraulic forming, Magnetic pulse forming.	3
	TOTAL	40

TEX	т воок	
1	Rao. P.N., Manufacturing Technology, Vol. 1,2 and 3, Tata McGraw Hill	2013
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Lal G.K., Introduction to Machining Science, New Age international Publishers.	2007
2	Ghosh, A., & Mallik, A. K. 1986. Manufacturing Science: East West Press Private Limited.	1999
3	Schey, Introduction to Manufacturing Processes, Tata McGraw Hill	2000
4	Kalpakjian, S., & Schmid, S. R., Manufacturing processes for engineering materials, Pearson Education.	2008
5	Pandey & Singh, Production Engineering Science, Standard Publishers Distributer, Delhi.	1999
6	Stephenson, D. A., & Agapiou, J. S. Metal cutting theory and practice: CRC Taylor & Francis.	2006
7	Karl H.Heller, All About Machine Tools, Wiley Eastern Ltd., New Delhi	1972
8	Kalpakjian, S. & Schmid S.R, Manufacturing Engineering and Technology, Addison Wesley Pub. Co.	2000
9	Sen, G. C., & Bhattacharyya, A. Principles of Machine Tools: New Central Book Agency	1988
10	Bhattacharyya A, Theory & Practice of Metal Cutting, New Central Book Agency	2006
11	Shan, H.S., Manufacturing Process, Pearson Education.	2012
12	Boothroyd, G., & Knight, W. A. Fundamentals of machining and machine tools: Taylor and Francis.	2006
13	Milton C. Shaw, Metal Cutting Principles, CBS Publishers.	2005

4ME4A: DESIGN OF MACHINE ELEMENTS - I

Max. Marks: 100

B.Tech. (Mechanical) 4^{th} semester

3L+0T	OT Exam				
UNIT	CONTENTS				
I	Materials: Mechanical Properties and IS coding of various materials, Selection of material from properties and economic aspects. Manufacturing Considerations in Design: Standardization, Interchangeability, limits, fits tolerances and surface roughness, BIS codes, Design consideration for cast, forged and machined parts. Design for assembly.				
п	Design for Strength : Modes of failure, Strength and Stiffness considerations, Allowable stresses, factor of safety, Stress concentration: causes and mitigation, fatigue failures.				
	Design of Members subjected to direct stress : pin, cotter and keyed joints.	5			
Ш	Design of Members in Bending : Beams, levers and laminated springs. Design for stiffness of beam: Use of maximum deflection formula for various end conditions for beam design				
IV	Design of Members in Torsion Shaft and Keys: Design for strength, rigidity. Solid and hollow shafts. Shafts under combined loading. Sunk keys. Couplings: Design of muff coupling, flanged couplings: rigid and	5			
	flexible Design of Threaded fasteners: Bolt of uniform strength, Preloading of bolts: Effect of initial tension and applied loads, Eccentric loading				
v	Power screws like lead screw, screw jack	2			
	Design of members which are curved like crane hook, body of C-clamp, machine frame etc.	3			
	TOTAL	40			

TEX	TT BOOK	
1	Bhandari, V. B., Introduction to Machine Design, McGraw Hill Education (India)	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Bahl and Goel, Mechanical Machine Design, Standard Publishers Distributors	2002
2	Shigley, Joseph E., Mechanical Engineering Design, McGraw Hill Education (India)	2002
3	Sharma and Aggarwal, Machine Design, S.K.Kataria and Sons, Delhi.	
4	Sharma and Purohit, Design of Machine Elements, Prentice Hall India.	
5	Jindal U C, Machine Design, Pearson Education India	2010

4ME5A: INDUSTRIAL ENGINEERING

B.Tech. (Mechanical) 4^{th} semester

 Exam Hours: 3

 UNIT
 CONTENTS
 CONTACT HOURS

 I
 Concept and definition of Industrial Engineering, Historical development of IE, Role of Industrial Engineer, Applications of IE. Concept of Productivity, Work Study and Productivity,
 I

Techniques of work study, basic procedure, approach to method study, method study charts and diagrams, principles of motion economy, Work measurement; basic procedure, techniques: Stop watch time study and work sampling, rating, determination of standard time Evolution of Management Theory, scientific management, Contributions of Taylor, Fayol, Mayo to scientific management, Levels of Management Administration and Management, fundamental functions of management, Decision making. Business Forms and Organization: Forms of Business: Single proprietorship, partnership, joint stock company, co-operative society, State undertakings. Formation of Joint Stock Companies: Registration, issue of Prospectus, Commencement Certificate. Organization: meaning, Types of organization; Line, Functional, Line Staff organization and line Staff Committee organization, span of control. Finance & Financial Statements: Introduction, Needs of Finance, Kinds of Capital, Sources of fixed capital, Shares. Borrow capital, surplus profits. Sources of working capital and its management, Profit & Loss Statement, Balance Sheet, Financial ratios: Liquidity ratio, Profits investment ratio, equity ratio, inventory ratio.
Work measurement; basic procedure, techniques: Stop watch time study and work sampling, rating, determination of standard time Evolution of Management Theory, scientific management, Contributions of Taylor, Fayol, Mayo to scientific management, Levels of Management Administration and Management, fundamental functions of management, Decision making. Business Forms and Organization: Forms of Business: Single proprietorship, partnership, joint stock company, co-operative society, State undertakings. Formation of Joint Stock Companies: Registration, issue of Prospectus, Commencement Certificate. Organization: meaning, Types of organization; Line, Functional, Line Staff organization and line Staff Committee organization, span of control. Finance & Financial Statements: Introduction, Needs of Finance, Kinds of Capital, Sources of fixed capital, Shares. Borrow capital, surplus profits. Sources of working capital and its management, Profit & Loss Statement, Balance Sheet, Financial ratios: Liquidity ratio, Profits
study and work sampling, rating, determination of standard time Evolution of Management Theory, scientific management, Contributions of Taylor, Fayol, Mayo to scientific management, Levels of Management Administration and Management, fundamental functions of management, Decision making. Business Forms and Organization: Forms of Business: Single proprietorship, partnership, joint stock company, co-operative society, State undertakings. Formation of Joint Stock Companies: Registration, issue of Prospectus, Commencement Certificate. Organization: meaning, Types of organization; Line, Functional, Line Staff organization and line Staff Committee organization, span of control. Finance & Financial Statements: Introduction, Needs of Finance, Kinds of Capital, Sources of fixed capital, Shares. Borrow capital, surplus profits. Sources of working capital and its management, Profit & Loss Statement, Balance Sheet, Financial ratios: Liquidity ratio, Profits
Contributions of Taylor, Fayol, Mayo to scientific management, Levels of Management Administration and Management, fundamental functions of management, Decision making. Business Forms and Organization: Forms of Business: Single proprietorship, partnership, joint stock company, co-operative society, State undertakings. Formation of Joint Stock Companies: Registration, issue of Prospectus, Commencement Certificate. Organization: meaning, Types of organization; Line, Functional, Line Staff organization and line Staff Committee organization, span of control. Finance & Financial Statements: Introduction, Needs of Finance, Kinds of Capital, Sources of fixed capital, Shares. Borrow capital, surplus profits. Sources of working capital and its management, Profit & Loss Statement, Balance Sheet, Financial ratios: Liquidity ratio, Profits
proprietorship, partnership, joint stock company, co-operative society, State undertakings. Formation of Joint Stock Companies: Registration, issue of Prospectus, Commencement Certificate. Organization: meaning, Types of organization; Line, Functional, Line Staff organization and line Staff Committee organization, span of control. Finance & Financial Statements: Introduction, Needs of Finance, Kinds of Capital, Sources of fixed capital, Shares. Borrow capital, surplus profits. Sources of working capital and its management, Profit & Loss Statement, Balance Sheet, Financial ratios: Liquidity ratio, Profits
Finance & Financial Statements: Introduction, Needs of Finance, Kinds of Capital, Sources of fixed capital, Shares. Borrow capital, surplus profits. Sources of working capital and its management, Profit & Loss Statement, Balance Sheet, Financial ratios: Liquidity ratio, Profits
Sources of working capital and its management, Profit & Loss Statement, Balance Sheet, Financial ratios: Liquidity ratio, Profits
investment ratio, equity ratio, inventory ratio.
Time value of money: Simple and compound interest, Time value equivalence, Compound interest factors, Cash flow diagrams, Calculation of time -value equivalences. Present worth comparisons, Comparisons of assets with equal, unequal life, comparison of deferred investments,
Time value of money II: Future worth comparison, payback period comparison. Rate of return, internal rate of return, comparison of IRR with other methods
Depreciation: Causes, Basic methods of computing depreciation charges; Straight line, Sinking fund, Declining Balance and Sum of year's digits method. 3
Breakeven analysis: Basic concepts, Linear Breakeven analysis for single product, Breakeven charts, Dumping.
TOTAL 40

TEX	т воок		
1	Motion and Time Study and Measurement of Work, Ralph, M Barnes , John Wiley and Sons.	2001	
REF	REFERENCE BOOKS		
SN	Name of Authors /Books /Publisher	Year of Pub.	
1	Introduction to Work Study, George Kanawaty, ILO.	2002	
2	Prasad, L.M., Principles and practice of Management, Sultan Chand &		
	Sons.		
3	Sushil Kumar Basu, K. C. Sahu, N. K. Datta, Works Organisation &		
	Management, Oxford & IBH.		
4	Dexter S. Kimball, Principles of Industrial Organization, Read Books.		
5	Leon Pratt Alford, Henry Russell Beatty, Principles of Industrial		
	Management, Revised Edition, Ronald Press Co.		
6	Essentials of Industrial Management, McGraw-Hill Industrial organization		
	and management series, Lawrence L. Bethel, McGraw-Hill.		
7	Riggs, J.L., Bedworth, D.J., Randhawa, S.U., Engineering Economics, Tata McGraw-Hill.		

4ME6A: I.C. ENGINES

B.Tech. (Mechanical) 4th Semester

Page 16

3L+OT Exam Hours: 3

3L+01	DI Exar			
UNIT	CONTENTS			
	History of IC engines : Nomenclature, Classification & Comparison, SI & CI, 4stroke- 2 stroke, First Law analysis, Energy Balance. Fuel-air cycles, Actual cycles	HOURS 4		
I	Testing & Performance: Performance parameters, Measurement of operating parameters e.g. speed, fuel & air consumption, Powers, IHP, BHP, FHP, Efficiencies Thermal, Mechanical, Volumetric, Emission Measurement, Indian & International standards of Testing, Emission.	4		
п	Fuel & Combustion: Combustion in CI & SI engines, Ignition Limits, Stages of combustion, Combustion parameters. Delay period and Ignition Lag, Turbulence and Swirl, Effects of engine variables on combustion parameters, abnormal combustion in CI & SI engines, Detonation & knocking, Theories of detonation, Control of abnormal combustion, Combustion chamber design principles, Types of combustion chamber.			
	Fuel: Conventional Petroleum, structure, Refining Fuels for SI & CI engines, Knock rating, Additives, Fuels for Turbine & Jet Propulsion. Alternative Fuels: Methanol, Ethanol, Comparison with gasoline, Manufacturing, Engine performance with pure Methanol, Ethanol & blends, Alcohols with diesel engine, Vegetable oils, Bio gas.	2		
	Engine Systems & Components: Fuel System (SI Engine), Carburetion & Injection, process & parameters, properties of A/F mixture, Requirements of A/F ratios as per different operating conditions, Carburettors, types, Aircraft carburettor, comparison of carburetion & injection, F/A ratio calculations.	3		
III	CI engine: Mixture requirements & constraints, Method of injection, Injection systems, CRDI etc. system components, pumps injectors. Ignition system: Conventional & Modern ignition systems Magneto v/s	2		
	Battery, CB point v/s Electronic ignition, Fuel Ignition Energy requirements. Spark advance, centrifugal, vacuum Firing order, spark plugs.	3		
	Engine Friction & Lubrication: Determination of friction, Lubrication principles, Types of lubrication, Places of lubrication Bearings and piston rings etc., Functions of Lubrication, Properties, Rating and Classification of lubricating oil, Additives, Lubrication systems. Engine Cooling: Requirements of cooling, Areas of heat flow, High temperature regions of combustion chamber. Heat Balance, Cooling Systems, Air,			
IV	Water Cooling, Cooling system components. Supercharging: Objectives, Thermodynamic cycle & performance of super charged SI & CI engines, Methods of super charging, Limitations, Two stroke engines: Comparison of 4s & 2s engines construction & valve lining scavenging. Process parameters, systems, supercharging of 2 stroke engines.	3		
v	Dual & Multi fuel engines: Principle, fuels, Combustion, performance Advantages, Modification in fuel system.	4		
	Special Engines: Working principles of Rotary, Stratified charge, Free piston, Variable compression ratio engines.			
		40		

TEX	T BOOK	
1	Mathur & Sharma, Internal Combustion Engines, Dhanpat Rai & Sons	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
		1 40.

	of India	
2	F.Edward Obert, Internal Combustion Engines, Harper and Raw	
	Publisher.	
3	John B. Heyword, Internal Combustion Engines Fundamentals, McGraw	
	Hill	
4	Lichty, Internal Combustion Engines, McGraw Hill.	
5	Gill, Smith, Ziurs, Fundamentals of Internal Combustion Engine, Oxford	
	& IBH Publishing	
6	Rogowsky, IC Engines, International Book Co.	
7	Ganeshan, V., Internal Combustion Engine, Tata Mc Graw Hill.	
8	R. Yadav, I.C Engine, Central Publishing House, Allahabad	

4ME7A: KINEMATICS OF MACHINES LAB

B.Tech. (Mechanical) 4th Semester Max. Marks: 75 0L+0T+2P Exam Hours: 2

SN	NAME OF EXPERIMENT			
1	To study inversions of four bar chain: Coupling Rod, Beam Engine			
2	To study Steering Mechanisms; Davis and Ackerman.			
3	Study of quick return mechanism and draw velocity and acceleration diagram.			
4	Study of inversion of Double slider chain Oldham Coupling, Scotch Yoke and Elliptical Trammel.			
5	Study of various cam-follower arrangements.			
6	To plot displacement v/s angle of rotation curve for various cams			
7	To determine co-efficient of friction using two roller oscillating arrangement.			
8	Study of various types of dynamometers, Brakes and Clutches.			
9	To determine moment of inertia of the given object using of Trifler suspension.			
10	Perform study of the following using Virtual Lab http://www.vlab.co.in/			
11	Position, velocity and acceleration analysis of Grashof four bar mechanism			
12	Position, velocity and acceleration analysis of Slider Crank mechanism			

4ME8A: FLUID MECHANICS LAB

B.Tech. (Mechanical) 4th Semester Max. Marks: 50 0L+0T+2P Exam Hours: 2

SN	NAME OF EXPERIMENT	CONTACT HOURS
1	Determination of Meta-centric height of a given body.	
2	Determination of Cd, Cv & Cc for given orifice.	
3	Calibration of contracted Rectangular Notch and / Triangular Notch and determination of flow rate.	
4	Determination of velocity of water by Pitot tube.	
5	Verification of Bernoulli's theorem.	
6	Calibration and flow rate determination using Venturimeter & Orifice meter and Nozzle meter	
7	Determination of head loss in given length of pipe.	
8	Determination of the Reynold's number for laminar, turbulent and transient flow in pipe.	
9	Determination of Coefficient for minor losses in pipes.	
10	To study the velocity distribution in a pipe and also to compute the discharge by integrating the velocity profile.	

	To study the boundary layer velocity profile over a flat plate and to
11	determine the boundary layer thickness.

4ME9A: PRODUCTION PRACTICE-II

B.Tech. (Mechanical) 4th semester

OL+OT	OT +3P Exam Hours: 3			
UNIT	NAME OF EXPERIMENT			
1	To study of single point cutting tool geometry and to grind the tool as per given tool geometry.			
2	To study the milling machine, milling cutters, indexing heads and indexing methods and to prepare a gear on milling machine.			
3	To machine a hexagonal / octagonal nut using indexing head on milling machine.			
4	To cut BSW/Metric internal threads on lathe machine.			
5	a) To cut multi-start Square/Metric threads on lathe machine.			
	b) Boring using a boring bar in a centre lathe.			
6	Study of capstan lathe and its tooling and prepare a tool layout & job as per given drawing.			
7	Demonstration on milling machine for generation of plane surfaces and use of end milling cutters.			
8	Grinding of milling cutters and drills.			
9	Exercise on cylindrical and surface grinders to machine surfaces as per drawing.			
10	Cylindrical grinding using grinding attachment in a centre lathe			

	4ME10A: MACHINE DESIGN SESSIONAL-I			
B.Te	B.Tech. (Mechanical) 4th Semester Max			. Marks: 75
OL+C	OL+OT+3P Exa		am Hours: 3	
SN	SESSIO	NAL WORK		CONTACT HOURS
1	Material selection and relevant BIS	nomenclature		
2	Selecting fit and assigning tolerance	es		
3	Examples of Production considerat	ions		
4	Problems on:			
	(a) Knuckle & Cotter joints			
	(b) Torque: Keyed joints and shaft of	couplings		
	(c) Design of screw fastening			
	(d) Bending: Beams, Levers etc.			
	(e) Combined stresses: Shafts, brace	ekets, eccentric loading.		

T	TEXT BOOK		
1.	Design Data Book, PSG College of Technology		

4ME11A: THERMAL ENGINEERING LAB-1

B.Tech. (Mechanical) 4th semester 0L+0T +2P

Exam Hours:	2

UNIT	NAME OF EXPERIMENT	CONTACT HOURS
1	Study of working of four stroke petrol engine and four stroke diesel	

	engine with the help of cut section models	
2	Study of working of two stroke petrol and two stroke diesel engine with	
	the help of cut section models.	
3	To draw valve timing diagram for a single cylinder diesel engine.	
4	Study of various types of boilers.	
5	Study of various types of mountings and accessories.	
	Demonstration of steering system and measurement of steering	
6	geometry angles and their impact on vehicle performance.	
7	Study of braking system with specific reference to types of braking	
7	system, master cylinder, brake shoes.	
	Study of transmission system including clutches, gear box assembly	
8	and differential.	
	Study of fuel supply system of a petrol engine (fuel pump and simple	
9	carburetor)	
10	Study of fuel supply system of a Diesel engine (fuel pump and fuel	
10	injector)	
	Study of Ignition systems of an IC Engine (Battery and Magneto ignition	
11	system) and Electronic ignition system.	
10	Study of Lubrication system of an IC Engine (mist, splash and pressure	
12	lubrication)	
13	Study of cooling systems of an IC Engine (air cooling and water cooling)	
	stand of cooming of coming of an in an including and water cooming,	

5ME1A: HEAT TRANSFER

B.Tech. (Mechanical) 5th Semester

3L+1T	L+1T Exam		
UNIT	CONTENTS	CONTACT	
OMII	CONTENTS	HOURS	
I	Introduction: Heat transfer processes, conduction and radiation. Fourier's law of heat conduction, thermal conductivity, thermal conductivity of solids, liquids and gases, effect of temperature on thermal conductivity. Newton's law of cooling, definition of overall heat transfer coefficient. General parameters influence the value of heat transfer coefficient.	4	
	Conduction: General 3-Dimensoinal conduction equation in Cartesian, cylindrical and spherical coordinates; different kinds of boundary conditions; nature of differential equations; one dimensional heat conduction with and without heat generation; electrical analogy; heat conduction through composite walls; critical thickness of insulation	3	
	Heat transfer from extended surfaces: Governing differential equation of fin, fin efficiency and effectiveness for different boundary conditions.	3	
II	Unsteady state heat conduction for slab, cylinder and sphere, Heisler chart.	2	
	Convection: Review of Navier – Stokes and energy equation, hydrodynamic and thermal boundary layers; laminar boundary layer equations; forced convection appropriate non dimensional members; effect of Prandtl number; empirical relations for flow over a flat plate and flow through pipes.	4	
	Natural convection: Dimensional analysis, Grashoff number, boundary layers in external flows (flow over a flat plate only), boundary layer equations and their solutions, heat transfer correlations.	4	
III	Heat transfer with change of phase: Nature of vaporization phenomena; different regimes of boiling heat transfer; correlations for saturated liquid vaporization; condensation on flat plates; correlation of	4	
	experimental results, drop wise condensation.	4	

IV	Heat exchanger: Types of heat exchangers, arithmetic and logarithmic mean temperature differences, heat transfer coefficient for parallel, counter and cross flow type heat exchanger; effectiveness of heat exchanger, N.T.U. method, fouling factor. Constructional and	
	manufacturing aspects of Heat Exchangers.	8
v	Thermal Radiation: Plank distribution law, Krichoff's law; radiation properties, diffuse radiations; Lambert's law. Radiation intensity, heat exchange between two black bodies heat exchanger between gray bodies. Shape factor; electrical analogy; reradiating surfaces heat	
	transfer in presence of reradiating surfaces.	8
		40

TEX	т воок	
1	J.P. Halman, Heat Transfer, Mc Graw Hill	
REF	PERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Incropera and Dewitt, Fundamental of Heat and Mass transfer, John Wiley	2007
2	Cengel, Heat and Mass transfer, Mc Graw Hill	2011
3	M.Thirumaleshwar, Fundamental of Heat and Mass Transfer, Pearson Education	2006
4	Ozisik, Heat and Mass Transfer, Mc Graw Hill	2009

5ME2A: DYNAMICS OF MACHINES

B.Tech. (Mechanical) 5^{th} semester

3L+1T	+1T Exan	
UNIT	CONTENTS	CONTACT HOURS
I	Governors: Comparison between flywheel and governor, Types of governor, Watt, Porter, Proell, Hartnell and spring controlled governors, sensitiveness of governors, stability of governors, isochronous and hunting, governor effort, power, controlling force diagram.	8
п	Gyroscope: Principle of gyroscopic couple, effect of gyroscopic couple and centrifugal force on aeroplanes, ships and vehicle taking a turn, stabilization of sea vessels, stability of four wheeled vehicle moving in a curved path, curved path with banking, stability of two wheeled vehicle, gyroscopic effect on inclined rotating disc	5
	Inertia force analysis : Velocity and acceleration of slider crank and four bar mechanism, inertia force, piston thrust and forces on connecting rod, turning moment diagram, flywheel.	3
III	Gears: Classification, terminology, law of gearing, velocity of sliding, gear tooth profile, comparison of cycloidal and involute tooth profile, standard interchangeable tooth profile, length of path of contact, arc of contact, contact ratio, interference, undercutting, minimum number of teeth on pinion in contact with gear or rack, bevel, helical and spiral gears.	9
IV	Gear Trains : Simple, compound, reverted and epicyclic gear trains, analytical, tabular, graphical and vector methods for finding velocity ratio, gear boxes- sliding and constant mesh, synchromesh and differential gear box.	7
v	Balancing: Need of balancing, Balancing of rotating masses, single plane, different planes, balancing of reciprocating masses, single cylinder engine, multi-cylinder inline engines, V-engines, concept of direct and reverse cranks, partial balancing of locomotives, IC engines,	0
	V engines and balancing machines. TOTAL	8 40
	IOTAL	+∪

TEX	т воок	
1	Rattan, S.S., "Theory of Machines", 2nd Ed., Tata McGraw Hill.	2006
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Bevan, T., "Theory of Machines", Pearson Education.	2013
2	Uicker, J.J., Pennocle, G.R, and Shigley, J.E, "Theory of Machines and	2009
	Mechanisms", 3 rd Ed., Oxford University Press.	
3	Ambekar , A. G., "Mechanism And Machine Theory", Prentice-hall Of	2007
	India	
4	Ghosh, A., "Theory of Mechanisms and Machines", Affiliated East West	
	Press.	
5	Singh, S., "Theory of Machines", Pearson Education	2013

5ME3A: MEASUREMENT & METROLOGY

B.Tech. (Mechanical) 5th semester Max. Marks: 100 3L+0T Exam Hours: 3

3L+01	Exa	m Hours: 3
UNIT	CONTENTS	CONTACT HOURS
	Concept of measurement: General concept of measurement, Need for measurement, Generalized measuring system, Units, Standards, Sensitivity, Readability, Range of accuracy, Precision, Accuracy Vs	
I	precision, Uncertainty. Repeatability and reproducibility, Errors in measurement, Types of error, Systematic and random error, Comparison between systematic	4
	error and random error, Correction, Calibration, Interchangeability.	3
	Linear and angular measurements: Linear measuring instruments:	
	Vernier caliper, Micrometer, Interval measurements:- Slip gauges,	
	Checking of slip gauges for surface quality, Optical flat, Limit gauges:-	3
	Gauge design, Problems on gauge design, Application of limit gauges;	
II	Comparators:- Mechanical comparators, Electrical comparator, Optical	2
	comparator, Pneumatic comparator;	
	Sine bar, Use of sine bar, Limitations of sine bars, Sources of error in	
	sine bars, Bevel protractor, Applications of bevel protractor,	
	Autocollimator, Angle dekkor	4
	Form measurement: Introduction, Screw thread measurement, Thread	
	gauges, Measurement of gears: Gear errors, Spur gear measurement,	
III	Parkinson gear tester, Problems on gear measurement.	4
	Surface finish measurement:-Introduction, Elements of surface texture,	
	Analysis of surface finish, Methods of measuring surface finish,	_
	Straightness measurement, Flatness testing, Roundness measurements	4
	Laser and advances in metrology: Laser metrology, Laser telemetric	
	system, Laser and led based distance measuring instruments, pattern	
	formed in a laser, Principle of laser, Interferometry, Use of laser in	•
	interferometry, Laser interferometry.	3
IV	Machine tool metrology: Various geometrical checks on machine tool,	
	Laser equipment for alignment testing, Machine tools tests, Alignment	
	tests on lathe, milling machine, pillar type drilling machine, Acceptance tests for surface grinders, Coordinate measuring machine (CMM):-	
	Types of CMM, Features of CMM, Computer based inspection,	
İ	Computer aided inspection using robots.	5
	Measurement of power, flow and temperature related properties	3
	Measurement of force, Direct methods, Indirect methods:	
v	Accelerometer, Load cells, Bourdon tube.	
_	Torque measurement: Prony brake, Torque measurement using strain	
	gauges, Torque measurement using torsion bars,	4
	Occident and an amount and to	•

Measurement of power: Mechanical dynamometers, D.C. dynamometer,	
Eddy current or inductor dynamometers	
Measurement of flow: Orifice meter, Venturimeter, Flow nozzle,	
Variable area meters – rotameter, Hot wire anemometer, Pitot tube.	
Temperature measurement, Bimetallic strip, Calibration of temperature	
measuring devices, Thermocouples (Thermo electric effects),	
Thermistors, Pyrometers	4
TOTAL	40

TEX	T BOOK	
1	G.K. Vijayaraghavan & R. Rajappan, Engineering Metrology and Measurements, A.R.S. Publications, Chennai, Fourth Edition June	2009
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Mechanical Measurements , Beckwith T.G. ,N.L. Buck, and R.D. Marangoni , Addison Wesley	
2	Dimensional Metrology . Khare & Vajpayee, Oxford & IBH	
3	Engineering Metrology, Jain R.K., Khanna Publishers	
4	Metrology & Precision Engineering , Scarr, McGraw Hill	
5	Handbook of Industrial Metrology, ASTME	
6		

5ME4A: QUALITY ASSURANCE AND RELIABILITY

B.Tech. (Mechanical) 5th semester Max. Marks: 100 3L+0T Exam Hours: 3

3L+01	Exa	m Hours: 3
UNIT	CONTENTS	CONTACT HOURS
I	The meaning of Quality and quality improvement, dimensions of quality, history of quality methodology, quality control, Quality of design and quality of conformance, Quality policy and objectives, Economics of quality.	5
1	Modeling process quality: Describing variation, frequency distribution, continuous and discrete, probability distributions, pattern of variation, Inferences about process quality: sampling distributions and estimation of process parameters. Analysis of variance.	4
п	Statistical Quality Control: Concept of SQC, Chance and assignable causes of variation, statistical basis of control chart, basic principles, choice of control limits, sample size and sampling frequency, analysis of patterns on control charts. The magnificent seven.	4
	Control chart for variables,: X-bar and R charts, X-bar and S charts, control chart for individual measurement. Application of variable control charts.	4
ш	Control chart for attributes: control chart for fraction non conforming P-chart, np-chart, c-chart and u-chart. Demerit systems, choice between attribute and variable control chart. SPC for short production runs. Process capability analysis using histogram and probability plot, capability ratios and concept of six sigma.	7
	Quality Assurance: Concept, advantages, field complaints, quality rating, quality audit.	2
IV	Acceptance Sampling: Fundamental concepts in acceptance sampling, operating characteristics curve. Acceptance sampling plans, single, double and multiple sampling plans, LTPD, AOQL, AOQ.	4
	Introduction to Quality systems like ISO 9000 and ISO 14000.	2

	Reliability and Life Testing- Failure models of components, definition of reliability, MTBF, Failure rate, common failure rate curve, types of	
	failure, reliability evaluation in simple cases of exponential failures in	
v	series, paralleled and series-parallel device configurations, Redundancy and improvement factors evaluations. Introduction to Availability and Maintainability	4
	Introduction to Taguchi Method of Design of Experiments, Quality loss	
	function.	4
	TOTAL	40

TEX	T BOOK	
1	Introduction to Statistical Quality Control, Douglas C. Montgomery, 2nd Edition, Wiley.	1991
2	Charles E. Ebeling, An introduction to reliability and maintainability engineering, Tata McGraw-Hill Education.	2004
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Quality Planning and Analysis, J.M.Juran and F.M. Gryna, McGraw Hill	
2	Quality Control, Dale H. Besterfield, 8th Edition, Pearson/Prentice Hall	2008
3	Statistical Quality Control, E. L. Grant and Richard S. Leavenworth, Tata McGraw-Hill	2000
4	Fundamentals of Quality Control and Improvement, Amitava Mitra, 2nd Edition, Prentice Hall	1998
5	Design and Analysis of Experiments, 5th Edition, Douglas C. Montgomery, Wiley-India	2007

5ME5A: SOCIOLOGY AND ELEMENTS OF ECONOMICS FOR ENGINEERS B.Tech. (Mechanical) 5th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT
		HOURS
	Introduction to sociological concepts-structure, system, organization,	
_	social institutions, Culture social stratification (caste, class, gender,	_
I	power).State & civil society.	4
	Social change in contemporary India: Modernization and globalization,	
	Secularism and communalism, Nature of development,	4
	Processes of social exclusion and inclusion, Changing nature of work	
	and organization.	4
II	Political economy of Indian society. Industrial, Urban, Agrarian and	
	Tribal society; Caste, Class, Ethnicity and Gender; Ecology and	
	Environment.	5
	Basic Principles and Methodology of Economics. Demand/Supply -	
	elasticity –. Theory of the Firm and Market Structure.	4
III	Basic Macroeconomic Concepts (including GDP/GNP/NI/Disposable	
111	Income) and Identities for both closed and open economies. Aggregate	
	demand and Supply (IS/LM). Price Indices (WPI/CPI), Interest rates,	
	Direct and Indirect Taxes.	4
	Public Sector Economics -Welfare, Externalities, Labour Market.	
	Components of Monetary and Financial System, Central Bank -	
77.7	Monetary Aggregates; Commercial Banks & their functions; Capital and	
IV	Debt Markets.	4
	Monetary and Fiscal Policy Tools & their impact on the economy -	
	Inflation and Phillips Curve	4
	Indian economy Brief overview of post independence period - plans.	4

	Post reform Growth, Structure of productive activity. Issues of Inclusion	
V	– Sectors, States/Regions, Groups of people (M/F), Urbanization.	
	Employment-Informal, Organized, Unorganized, Public, Private.	
	Challenges and Policy Debates in Monetary, Fiscal, Social, External	
	sectors.	4
		40

TEX	т воок	
1	Mankiw Gregory N., Principles of Economics, Thompson Asia	2002
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Giddens, A, Sociology, Polity, 6th edn.	2009
2	Haralambos M, RM Heald, M Holborn, Sociology, Collins	2000
3	Xaxa, V, State, Society and Tribes Pearson	2008
4	Chandoke, Neera & Praveen Priyadarshi , Contemporary India: Economy,	2009
	Society and Politics, Pearson	
5	Mohanty, M, Class, Caste & Gender- Volume 5, Sage	2004
6	Ramaswamy, E.A. and Ramaswamy, U., Industry and Labour, OU Press	1981
7	Bhowmik, S (ed.) Street Vendors in the Global Urban Economy, Routledge	2010
8	Rao, M.S.A. (ed.) Urban Sociology, Orient Longmans	1974
9	V. Mote, S. Paul, G. Gupta, Managerial Economics, Tata McGraw Hill	2004
10	Misra, S.K. and Puri, Indian Economy, Himalaya	2009
11	Pareek Saroj , Textbook of Business Economics, Sunrise Publishers	2003

5ME6.1A: COMPUTER AIDED DESIGN AND GRAPHICS

B.Tech. (Mechanical) 5th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
I	Overview of Computer Graphics: Picture representation, Coordinate Systems, Raster Scan Display, DDA for line generation and Bresenham's algorithm for line and circle generation; Graphics standards: GKS, IGES, STEP, DXF. Different types of models.	5
	Parametric representation of plane curves: line, circle, ellipse, parabola and hyperbola.	4
п	Parametric representation of Space Curves: Cubic spline curve, Bezier Curve and B Spline Curves. Blending of Curves.	4
	Parametric representation of Surfaces: Hermite Bicubic surfaces, Bezier surfaces and Bspline surfaces.	4
III	Solid Representation: B-rep. and CSG. Comparison between three types of models.	7
IV	Two and Three Dimensional Transformation of Geometric Models: Translation, Scaling Reflection, Rotation and Shearing, Homogeneous Representation, Combined Transformation.	4
	Projection of Geometric models : Parallel and Perspective Projection.	4
v	Clipping: Point clipping, Line clipping, Cohen- Sutherland algorithm etc., Viewing transformation.	4
•	Hidden line and surface removal : Techniques and Algorithms. Shading and Rendering.	4
	TOTAL	40

TEXT BOOK

1	Zeid and Sivasubramanian, CAD/CAM: Theory and Practice, Tata McGraw Hill	
2	Rogers and Adams, Mathematical Elements for Computer Graphics, Tata McGraw Hill	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Rao P.N., CAD / CAM Principles and Applications, McGraw Hill.	2004
2	Pao Y.C., Elements of Computer Aided Design and Manufacturing, John Wiley and Sons.	1984
3	Alavala C.R., CAD/CAM: Concepts and Applications, Prentice Hall of	2008
	India.	

5ME6.2A: AUTOMOBILE ENGINEERING

B.Tech. (Mechanical) 5^{th} semester 3L+0T

UNI T	CONTENTS	CONTACT HOURS
	Frame & Body: Layout of chassis, types of chassis frames and bodies, their constructional features and materials.	3
I	Clutches: single plate, multi-plate, cone clutch, semi centrifugal, electromagnetic, vacuum and hydraulic clutches. Fluid coupling. Brakes: Classification and function; Mechanical, hydraulic, vacuum air and self engineering brakes; Brake shoes and lining materials.	5
ıı	Gear Boxes : Sliding mesh, constant mesh, synchromesh and epicyclic gear boxes, Automatic transmission system; Hydraulic torque converter;	4
11	Drives : Overdrive, Propeller shaft, Universal joints, Differential; Rear axle drives. Hotchkiss and torque tube drives; Rear axle types; Front wheel and All wheel drive.	4
	Wheels and Tyres : Tyre types, Tyre construction; Tyre inflation pressure, Tyre wear and their causes; Re-treading of the tyre,	2
ш	Steering system: steering gear boxes, Steering linkages, Steering mechanism, Under and Over steering. Steering Geometry, Effect of camber, caster, king pin inclination, toe in and toe out; Power steering; Integral and linkage types	3
	Suspension system: objective and requirements, Suspension spring, front and rear suspension systems, Independent suspension system Shock absorbers.	3
IV	Automotive Electrical System: Battery construction, Charging and testing, battery types, Starting and Battery Charging System: Starter motor construction, types of drive, Alternator construction, regulation and rectification.	4
	Ignition System: Magneto and coil ignition systems, System components and requirements, Automotive lighting: Wiring systems Electrical instruments; head lamp, electric horn, fuel level indicator.	4
v	Automotive Air Conditioning: Introduction, Loads, Air conditioning system Components, Refrigerants, Fault Diagnosis.	4
	Automotive Safety: Safety requirements, Safety Devices, Air bags, belts, radio ranging, NVS (Night Vision System) GPS (Global Positioning	4

Max. Marks: 100

Exam Hours: 3

System)	
TOTAL	40

TEX	т воок	
1	RP SHARMA,A Course in Automobile Engineering,Dhanpat Rai & Sons	
2	P S Gill, A Text book of Automobile Engineering, KATSON Books VOL 1&2	2010
3	Kirpal Singh, Automobile Engineering, Standard	2003
REF	ERENCE BOOKS	
ILDI	BRENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.

5ME6.3A: STATISTICS FOR DECISION MAKING

B.Tech. (Mechanical) 5th semester 3L+0T

UNIT	CONTENTS	CONTACT HOURS
I	Introduction - Statistical Terminology: Descriptive statistics or exploratory data analysis, inferential statistics, population, sample, variable, parameter, statistic, random sample. Collecting Data: Historical data, types of studies (comparative, descriptive or noncomparative, observational, experimental), sample surveys, sampling and nonsampling errors, bias, representative sample, judgment sampling, quota sampling, simple random samples, sampling rate, sampling frame, stratified random sampling, multistage cluster sampling, probability-proportional-to-size sampling, systematic sampling.	3
п	Summarizing and Exploring Data: Variable types (categorical, qualitative, nominal, ordinal, numerical, continuous, discrete, interval, ratio), summarizing categorical data (frequency table, bar chart, Pareto chart, pie chart), summarizing numerical data (mean, median), skewness, outliers, measures of dispersion (quantiles, range, variance, standard deviation, interquartile range, coefficient of variation) s tandardized z-scores, histogram, bivariate numerical data (scatter plot, simple correlation coefficient, sample covariance), straight line regression, summarizing time-series data, data smoothing, forecasting techniques.	4
	Basic Concepts of Inference: Estimation, hypothesis testing, point estimation, confidence interval estimation, estimator, estimate, bias and variance of estimator, mean square error, precision and standard error, confidence level and limits, null and alternative hypothesis, type I and II error, probabilities of type I and II error, acceptance sampling, simple and composite hypothesis, P-value, one-sided and two -sided tests.	4
	Inference for Single Samples: Inference for the mean (large samples), confidence intervals for the mean, test for the mean, sample size determination for the z-interval, one-sided and two -sided z-test, inference for the mean (small samples), t distribution.	4
III	Inference for Two Samples: Independent sample design, matched pair design, pros and cons of each design, side by side box plots, comparing means of two populations, large sample confidence interval for the difference of two means, large sample test of hypothesis for the difference of two means, inference for small samples (confidence	4

Max. Marks: 100

Exam Hours: 3

	intervals and tests of hypothesis).	
	Inference for Proportions and Count Data: Large sample confidence interval for proportion, sample size determination for a confidence	
IV	interval for proportion,	3
10	Large sample hypothesis test on proportion, comparing two proportions in the independent sample design (confidence interval and test of hypothesis), chi-square statistic	4
	Simple Linear Regression and Correlation: Dependent and independent variables, probability model for simple linear regression, least squares fit, goodness of fit of the LS line, sums of squares, analysis of variance,	
v	prediction of future observation, confidence and prediction intervals, Multiple Linear Regression: Probability model for multiple linear regression, least squares fit, sums of squares.	4
	Use Excel, R, and MATLAB® in the class.	4
	TOTAL	40

TEX	ит воок	
1	Ajit Tamhane and Dorothy Dunlop "Statistics and Data Analysis: From Elementary to Intermediate" Prentice Hall	1999
REF	FERENCE BOOKS	
		37 C
SN	Name of Authors /Books /Publisher	Year of Pub.
SN 1	Name of Authors / Books / Publisher Richard Ivor Levin, David S. Rubin, Statistics for Managements, Prentice	
SN 1	· ·	Pub.

5ME7A: HEAT TRANSFER LAB.

B.Tech. (Mechanical) 5th Semester Max. Marks: 125 0L+0T+3P Exam Hours: 3

SN	NAME OF EXPERIMENT	CONTACT HOURS
1	To Determine Thermal Conductivity of Insulating Powders.	
2	To Determine Thermal Conductivity of a Good Conductor of Heat (Metal Rod).	
3	To determine the transfer Rate and Temperature Distribution for a Pin Fin.	
4	To Measure the Emissivity of the Test plate Surface.	
5	To Determine Stefan Boltzmann Constant of Radiation Heat Transfer.	
6	To Determine the Surface Heat Transfer Coefficient For Heated Vertical Cylinder in Natural Convection.	
7	Determination of Heat Transfer Coefficient in Drop Wise and Film Wise condensation.	
8	To Determine Critical Heat Flux in Saturated Pool Boiling.	
9	To Study and Compare LMTD and Effectiveness in Parallel and Counter Flow Heat Exchangers.	
10	To Find the Heat transfer Coefficient in Forced Convection in a tube.	
11	To study the rates of heat transfer for different materials and geometries	
12	To understand the importance and validity of engineering assumptions through the lumped heat capacity method.	

5ME8A: DYNAMICS OF MACHINES LAB. - II

B.Tech. (Mechanical) 5th Semester

OL+OT+2P Exam Hours: 2

SN	NAME OF EXPERIMENT	CONTACT HOURS
1	To verify the torque relation for gyroscope.	
2	To plot force vs. radius and lift vs. speed curves for governors.	
3	To plot pressure distribution curves on a journal bearing.	
4	To perform wheel balancing.	
5	To perform static and dynamic balancing on balancing set up.	
6	To determine mass moment of inertia of a flywheel.	
7	Study of a lathe gear box.	
8	Study of a sliding mesh automobile gear box.	
9	Study of a planetary gear box.	

5ME9A: PRODUCTION ENGINEERING LAB.

B.Tech. (Mechanical) 5th Semester

OL+0	+OT+3P Exam Hours: 3	
SN	NAME OF EXPERIMENT	CONTACT HOURS
1	Study of various measuring tools like dial gauge, micrometer, vernier caliper and telescopic gauges.	
2	Measurement of angle and width of a V-groove by using bevel protector	
3	(a) To measure a gap by using slip gauges(b) To compare & access the method of small-bore measurement with the aid of spheres.	
4	Measurement of angle by using sine bar.	
5	(a) Measurement of gear tooth thickness by using gear tooth vernier caliper.(b) To check accuracy of gear profile with the help of profile projector.	
6	To determine the effective diameter of external thread by using three-wire method.	
7	To measure flatness and surface defects in the given test piece with the help of monochromatic check light and optical flat.	
8	To check the accuracy of a ground, machined and lapped surface - (a) Flat surface (b) Cylindrical surface.	
9	Find out Chip reduction co-efficient (reciprocal of chip thickness ratio) during single point turning.	
10	Forces measurements during orthogonal turning.	
11	Torque and Thrust measurement during drilling.	
12	Forces measurement during plain milling operation.	
13	Measurement of Chip tool Interface temperature during turning using thermocouple technique.	

5ME10A: PROFESSIONAL ETHICS AND DISASTER MANAGEMENT

B.Tech. (Mechanical) 5th Semester

OL+OT+2P

Max. Marks: 50

Exam Hours: 2

SN	CONTENTS	CONTACT HOURS
1	Human values: Effect of Technological Growth and Sustainable Development. Profession and Human Values: Values crisis in contemporary society. Nature of values. Psychological Values, Societal Values and Aesthetic Values. Moral and Ethical values.	
2	Professional ethics: Professional and Professionalism-Professional Accountability, Role of a professional, Ethic and image of profession; Engineering Profession and Ethics: Technology and society, Ethical obligations of Engineering professionals, Roles of Engineers in industry, society, nation and the world; Professional Responsibilities: Collegiality,	

	Lavelty Confidentially Conflict of Interest Whistle Planning	
	Loyalty, Confidentially, Conflict of Interest, Whistle Blowing.	
3	Disaster management: Understanding Disasters and Hazards and related issues social and environmental. Risk and Vulnerability. Types of Disasters, their occurrence/ causes, impact and preventive measures: Natural Disasters- Hydro-meteorological Based Disasters like Flood, Flash Flood, Cloud Burst, Drought, Cyclone, Forest Fires; Geological Based Disasters like Earthquake, Tsunami, Landslides, Volcanic Eruptions. Man made Disasters: Chemical Industrial Hazards, Major Power Break Downs, Traffic Accidents, Fire Hazards, Nuclear Accidents. Disaster profile of Indian continent. Case studies. Disaster Management Cycle and its components.	
4	 In order to fulfill objectives of course, a) The institute shall be required to organize at least 3 expert lectures by eminent social workers/professional leaders. b) Each student shall compulsorily be required to: i. Visit a social institution/NGO for at least 7 days during the semester and submit a summary report. ii. II. Perform a case study of a disaster that has occurred in last decade and submit a summary report. 	

REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Professional Ethics by R Subramanian, oxford publishers	
2	Engineering Ethics: Concepts and cases by Charles E. Harris, Jr., Michael S. Pritchard, Michael J. Rabins. CENGAGE Learning, Delhi	
3	Controlling Technology: Ethics and Responsible Engineers by Stephen H Unger. John Willey and Sons.	
4	Ethical Issues in Engineering, by Deborah Johnson. Prentice Hall	
5	Human Values in the engineering Profession, Moniograph by A N Tripathi. Published by IIM Calcutta.	
6	Towards Basics of Natural Disaster Reduction by Prof. D.K. Sinha. Researchco Book Center, Delhi.	
7	Understanding Earthquake Disasters by Amita Sinvhal. Tata McGraw Hill, New Delhi.	

6ME1A: DESIGN OF MACHINE ELEMENTS- II

B.Tech. (Mechanical) 6th Semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
	Fatigue Considerations in Design: Variable load, loading pattern, endurance stresses, Influence of size, surface finish, notch sensitivity and stress concentration.	3
I	Goodman line, Soderberg line, Design of machine members subjected to combined, steady and alternating stresses.	3
	Design for finite life, Design of Shafts under Variable Stresses, Bolts subjected to variable stresses.	2
II	Design of IC Engine components: Piston, Cylinder, Connecting Rod and Crank Shaft.	8
III	Design of helical compression, tension, torsional springs, springs under variable stresses.	4
	Design of belt, rope and pulley drive system,	4

	Design of gear teeth: Lewis and Buckingham equations, wear and	4
IV	dynamic load considerations.	
10	Design and force analysis of spur, helical, bevel and worm gears,	4
	Bearing reactions due to gear tooth forces.	
	Design of Sliding and Journal Bearing: Methods of lubrication,	4
	hydrodynamic, hydrostatic, boundary etc. Minimum film thickness and	
V	thermal equilibrium.	
	Selection of anti-friction bearings for different loads and load cycles,	4
	Mounting of the bearings, Method of lubrication.	
	TOTAL	40

TEX	T BOOK	
1	Design of Machine Elements, Bhandari V.B, 3rd Ed., Tata McGraw-Hill, New Delhi	2010
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Machine Design, Sharma and Aggarwal, Kataria and Sons, Delhi.	1997
2	Mechanical Engg Design, Shigley, Mischke, Budynas and Nisbett, Tata McGraw-Hill	2002
3	PSG Design Data Book, P.S.G. College of Technology, Coimbatore.	1966
4	A Text Book of Machine Design, Karwa A., Laxmi Publication.	2002
5	Machine Design, Hall, Holwenko and Laughlin, Schaum's Outlines Series, Tata McGraw Hill.	

6ME2A: NEWER MACHINING METHODS

B.Tech. (Mechanical) 6th semester

3L+01	T Exam	
UNIT	CONTENTS	CONTACT HOURS
I	Introduction and classification of advanced machining process, consideration in process selection, difference between traditional and non-traditional process, Hybrid process.	3
	Abrasive finishing processes : AFM, MAF (for Plain and cylindrical surfaces).	4
II	Mechanical advanced machining process : Introduction, Mechanics of metal removal, process principle, Advantages, disadvantages and applications of AJM,USM,WJC.	6
III	Thermo electric advanced machining process : Introduction, Principle, process parameters, advantages, disadvantages and applications about EDM, EDG,	4
	LBM, PAM, EBM	6
IV	Electrochemical and chemical advanced machining process : ECM, ECG, ESD, Chemical machining,	5
10	Anode shape prediction and tool design for ECM process. Tool (cathode) design for ECM Process.	3
v	Intorduction to Micro and nanomachining, Nanoscale Cutting, Diamond Tools in Micromachining, Conventional Processes: Microturning, Microdrilling and Micromilling, Microgrinding, Non-Conventional Processes: Laser Micromachining, Evaluation of	5
	Subsurface Damage in Nano and Micromachining, Applications of Nano and Micromachining in Industry.	4
	TOTAL	40

TEX	T BOOK	
1	Modern Machining Process, Pandey and Shan, Tata McGraw Hill	1980
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Advance Machining Process, Jain V.K., Allied Publishers Ltd.	2002
2	Non Traditional Manufacturing Process, Gary F. Bevedict, Marcel Dekker Inc New York.	1987
3	Non-Conventional Machining Process, Mishra P.K., Narosa Publishing House	2006
4	Non-Conventional Machining Process, J.A. McGeough	1988
5	Nano and Micromachining, J. Paulo Davim, and Mark J. Jackson, Wiley-ISTE	2008

6ME3A: MECHATRONICS

B.Tech. (Mechanical) 6th Semester 3L+0T

3L+01		
UNIT	CONTENTS	CONTACT HOURS
I	Introduction: Introduction, scope and applications of Mechatronics systems. Process control automation, FMS and CNC Machines.	5
-	MEMS: Basics of Micro- and Nanotechnology, microprocessor-based controllers and Microelectronics	3
	Introduction to Sensors: Linear and Rotational Sensors, Acceleration, Force, Torque, Power, Flow and Temperature Sensors, Light Detection, Image, and Vision Systems, Integrated Micro-sensors,	4
П	Introduction to Actuators: Electro-mechanical Actuators, Electrical Machines, Piezoelectric Actuators, Hydraulic and Pneumatic Actuation Systems, MEMS: Micro-transducers Analysis, Design and Fabrication.	4
III	Systems and Controls: The Role of Controls in Mechatronics, Role of Modelling in Mechatronics Design, Signals and Systems: Continuous- and Discrete-time Signals, Z-Transforms and Digital Systems, Continuous- and Discrete-time State-space Models.	5
111	Advanced Control Systems: Digital Signal Processing for Mechatronics Applications, Control System Design, Adaptive and Nonlinear Control Design, Neural Networks and Fuzzy Systems, Design Optimization of Mechatronics Systems.	3
IV	Data Acquisition and related Instrumentation: Introduction to Data Acquisition Measurement Techniques: Sensors and Transducers, Quantizing theory, Analog to Digital Conversion, Digital to Analog (D/A) conversation, Signal Conditioning.	4
	Real time Instrumentation: Computer-Based Instrumentation Systems, Software Design and Development, Data Recording and Logging.	4
v	Design of Mechatronics systems: Introduction of mechatronics systems: Home appliances, ABS (anti-lock braking system) and other areas in automotive engineering, Elevators and escalators, Mobile robots and manipulator arms, Sorting and packaging systems in production lines, Computer Numerically Control (CNC) production machines, Aeroplanes and helicopters, Tank fluid level and temperature control systems.	8
TO		40
TEXT	ВООК	-
1 E	Bolton, W., "Mechatronics: Electronic Control Systems in Mechanical and Clectrical Engineering", Pearson Education	2011

REFERENCE BOOKS		
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Mechatronics, HMT Hand Book, Tata McGraw Hill	2000
2	Alciatore and Histand, "Introduction to Mechatronics and Measurement Systems", Tata McGraw Hill	2011
3	Smaili and Mrad, "Mechatronics: Integrated Technologies for Intelligent Machines", Oxford	2008
4	Mahalik N.P., "Mechatronics: Principles, Concepts and applications", Tata McGraw Hill.	2003

6ME4A: VIBRATION ENGINEERING

B.Tech. (Mechanical) $6^{\rm th}$ semester 3L+1T

3L+11		
UNIT	CONTENTS	CONTACT HOURS
	Introduction to Sound: Frequency dependent human response to sound, Sound pressure dependent human response, Relationship	
	among sound power, sound intensity and sound pressure level.	2
	Introduction to Noise: Auditory and Non auditory effects of Noise,	
I	Major sources of the noise, Industrial noise sources, Industrial noise	
•	control strategies.	3
	Introduction to Vibration: Importance and scope of vibrations,	
	terminology and classification, Concept of Degrees of freedom,	
	Harmonic motion, vectorial representation, complex number	
	representation, addition.	3
	Undamped Single Degree of Freedom System: Derivation of equation	
	of motion for one dimensional longitudinal, transverse and torsional	
	vibrations without damping using Newton's second law, D' Alembert's principle and Principle of conservation of energy, Compound pendulum	3
	and centre of percussion.	3
II	Damped vibrations of single degree of freedom systems: Viscous	
	damping, under-damped, critically damped and over-damped systems,	3
	Logarithmic decrement.	
	Vibration characteristics of Coulomb damped system and Vibration	
	characteristics of Hysteretic damped systems.	2
	Forced Vibrations of Single Degree of Freedom Systems: Forced	
	vibration with constant harmonic excitation, Steady state and transient	
	parts, Frequency response curves and phase angle plot, Forced	
III	vibration due to excitation of support.	4
	Vibration Isolation and Transmissibility: Force transmissibility,	
	Motion transmissibility, Forced vibration with rotating and	
	reciprocating unbalance, Materials used in vibration isolation.	4
	System with Two Degrees of Freedom: principle mode of vibration, Mode shapes, Undamped forced vibrations of two degrees of freedom	
	system with harmonic excitation, Vibration Absorber, Undamped	
IV	dynamic vibration absorber and centrifugal pendulum absorber	5
	Critical Speed of Shaft: Critical speed of a light shaft without	
	damping, critical speed of shaft having multiple discs, secondary	
	critical speed.	3
	Many Degrees of Freedom Systems (Exact analysis): Equation of	
	Motion, The matrix method, Eigen Values and Eigen Vectors, Method of	
	influence Coefficients and Maxwell's reciprocal theorem. Torsional	
V	vibrations of multi rotor system, vibrations of geared system,	
	Generalized coordinates and coordinate coupling Many Degrees of	
	Freedom Systems (approximate methods): Rayleigh's, Dunkerley's,	_
	Stodola's and Holzer's methods	5

Max. Marks: 100 Exam Hours: 3

Vibrations of continuous systems: Transverse vibration of a string,	
Longitudinal vibration of a bar, Torsional vibration of a shaft.	3
TOTAL	40

TEX	т воок	
1	Rao S.S., "Mechanical Vibrations", Pearson Education, 2nd Indian reprint.	2004
REI	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Ambekar A.G., "Mechanical Vibrations and Noise Engineering", Prentice-Hall of India Pvt. Ltd.	2006
2	Kelly, S.G., "Mechanical Vibrations, Theory and Applications, Cengage Learning	2013
3	Thomson, W.T., and Dahleh, M.D., Padmanabhan, C., "Theory of Vibrations with Applications", Pearson Education.	2014
4	Meirovitch, L., "Elements of Vibration Analysis", Tata McGraw-Hill	2006
5	Tongue, B.H., "Principles of Vibration", Oxford Publication	2007

6ME5A: STEAM ENGINEERING

B.Tech. (Mechanical) 6th Semester 3L+1T

UNIT	CONTENTS	CONTACT HOURS
I	Steam generators: Classification of Boilers, water and fire tube boilers, High pressure boilers, Advantages of high pr. Boilers, Natural and forced circulation boilers, Water wall.	4
	Steam drum internal, steam super heaters, Economizers, air preheater, induced, forced and balanced draught boilers, Fluidized bed boilers	4
II	Definition and type of nozzle and diffuser equation of continuity, sonic velocity, mach no. and stagnation properties, the steady flow energy equation for nozzles, momentum energy equation for flow through steam nozzles nozzle efficiency, effect of friction, nozzle for uniform pressure drop, throat pressure for maximum discharge or chock flow, critical pressure ratio, design of nozzle and diffuser.	8
Ш	Steam Turbines: Principle and working of steam turbines, type of turbines, compounding for pressure and velocity. Overview and difference of various type of turbine, different types of governing of turbines. Impulse turbine: The effect of blade friction on velocity diagram. Force, work and power, Blade or diagram efficiency, Gross stage efficiency, steam speed to blade, speed ratio for optimum performance, turbine performance at various loads	3
	Impulse reaction turbine: Velocity diagram and work done, degree of reaction, Parson turbine, blade efficiency, gross stage efficiency comparison of enthalpy drop in various stages, size of blades in impulse reaction turbines for various stages of impulse reaction and impulse turbine.	5
IV	Regenerative Feed Heating Cycles : Introduction, Ideal regenerative feed heating cycle, Regenerative heating cycles and their representation on T-s and h-s Diagram, Representation of actual process on T-s and h-s Diagram Regenerative cycles, types of feed heating arrangements, Optimum feed water temperature and saving in Heat Rate. direct contact and surface heaters.	4
v	Reheating of steam : Practical reheating and Non- reheating cycles, advantage and disadvantages of reheating, reheat regenerative cycle,	4

Max. Marks: 100

Exam Hours: 3

regenerative water extraction cycles.	
Process heat and by product power cycle, pass out turbine, Binary	
vapour cycle. Condensers.	3
	40

TEX	Т ВООК	
1	Steam, Gas Turbine and Power Plant Engineering, Yadav R., CPH Allahabad	
REF	PERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	A Practical Guide to Steam Turbine, Heinz P. Bloch, McGraw Hill Publication	1995
2	Steam Turbines: Design Application and Rerating, Heinz P. Bloch, McGraw Hill Publication.	1996
3	Steam Turbine: Theory and Design, Shlykhin P., University press of Pacific.	2006
4	Steam Turbine: Theory and Construction, Wilde and Salter, Merchant Books.	2007
5	Power Plant Engineering, Nag P.K., Tata McGraw-Hill, New Delhi.	1992
6	Thermal Science & Engineering, Kumar D.S., S.K.Kataria & Sons	2006
7	Engineering Thermodynamics, Nag P.K., Tata McGraw-Hill, New Delhi	1998
8	Fundamentals of Classical Thermodynamics, Gordan J Van Wylen, Willey Eastern Ltd.	1959
9	Engineering Thermodynamics, Cengel & Boles, Tata McGraw-Hill, New Delhi.	2006
10	Engineering Thermodynamics, Chottopadhyay P., Oxford University Press.	2009

6ME6.1A: NON DESTRUCTIVE EVALUATION AND TESTING

B.Tech. (Mechanical) 6th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
	Introduction : An Overview, Factors influencing the Reliability of NDE, Defects in materials, Defects in composites. NDT methods used for	
ı	evaluation of materials and composites.	3
_	Visual Inspection: Basic Principle and Applications.	2
	Liquid Penetrant Testing: Principle, Procedure and Test Parameters, Materials, Limitations and Applications.	3
II	Radiographic Inspection: Principles of X – ray radiography, equipment, Absorption, Scattering, X-ray film processing, General radiographic procedures, Reading and Interpretation of Radiographs, Industrial radiographic practice, Limitations and Applications, Welding defects detection. Gamma ray radiography.	8
	Ultrasonic Testing: Principle of wave propagation, Ultrasonic equipment, Variables affecting an ultrasound test, Basic methods: Pulse Echo and Through Transmission, Types of scanning.	5
III	Applications of UT: Testing of products, Welding Inspection, Tube Inspection, Thickness Measurement, Elastic Constant Determination, Ultrasonic testing of composites.	3
IV	Magnetic Particle Inspection: Methods of generating magnetic field, Demagnetization of materials, Magnetic particle test: Principle, Test Equipment and Procedure, Interpretation and evaluation.	5
	Introduction to Accostic Emission Testing and Thermography.	3
v	Eddy Current Testing: Principle of eddy current, Factors affecting eddy currents, Test system and test arrangement, Standardization and	5

	calibration, Application and effectiveness.	
	Comparison and Selection of NDT Methods, Codes and Standards	3
	TOTAL	40

TEX	T BOOK	
1	Baldev Raj, T. Jay Kumar, M. Thavasimuthu, Practical Non-Destructive	
	Testing, Narosa.	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Loius Cartz, Non Destructive Testing, ASM International	1995
2	J PRASAD, C G K NAIR, NDT & Evaluation Of Materials, Tata McGraw	2008
	Hill	
3	R. Halmshaw, Introduction to the Non-Destructive Testing of Welded	1997
	Joints,	
4	American Metals Society, Non-Destructive Examination and Quality	1989
	Control, Metals Hand Book, Vol.17, 9th Ed.	

6ME6.2A: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS

B.Tech. (Mechanical) 6th semester

3L+0T

Max. Marks: 100
Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
I	Plastics Materials: An Overview, Classification, Thermoplastics, Thermosets, Crystalline, Amorphous, and Liquid, Crystalline Polymers, Copolymers, Alloys, Elastomers, Additives, Reinforcements, and Fillers,	_
	Physical Properties and Terminology. Mechanical Properties, Thermal Properties, Electrical Properties, Environmental Considerations.	3
	Design Considerations for Injection-Molded Parts : Injection Molding Process, Design Strategy, Efficient and Functional Design, Material Selection,	2
II	Nominal Wall Thickness, Normal Ranges of Wall Thickness, Structural Requirements of the Nominal Wall,	2
	Insulation Characteristics of the Nominal Wall, Impact Response of the Nominal Wall, Draft, Structural Reinforcement, Ribs, Other Geometric Reinforcement, Bosses, Coring, Fillets and Radii, Undercuts	4
III	Polymer processing techniques such as extrusion, compression and transfer moulding.	4
	Injection moulding, blow moulding, thermoforming, rotational moulding, calendaring.	4
	Assembly: General Types of Assembly Systems, Molded-In Assembly Systems, Snap-Fit Assembly, Molded-In Threads, Press-Fits, Chemical Bonding Systems, Solvent Welding, Adhesive Bonding, Thermal Welding Methods.	4
IV	Spin Welding, Radio Frequency (RF) Welding, Electromagnetic or Induction Welding, Assembly with Fasteners, Bolted Assembly, Threaded Metal Inserts, Self-Tapping Screws, Riveted Assembly, Sheet Metal Nuts, Specialty Plastic Fasteners	4
	Machining of Plastics: Drilling and Reaming, Thread Tapping, Sawing, Milling, Turning, Grinding.	4
v	Finishing and Decorating of Plastics: Painting, Vacuum Metallizing and Sputter Plating, Electroplating, Flame Spraying/Arc Spraying, Hot Stamping	4
	TOTAL	40

TEX	т воок	
1	Design and Manufacture of Plastic Parts, R.L.E. Brown, John Wiley and Sons, New York	1980
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Designing with Plastics, Gerhard, Hanser Verlag	
2	Handbook of Plastics Joining: a practical guide, PDL handbook series, Plastics Design Library, William Andrew	
3	Modern Plastics Handbook, McGraw Hill handbooks, Modern plastics series, Charles A. Harper, McGraw-Hill Professional	1997
4	Industrial Plastics: theory and applications, Erik Lokensgard and Terry L. Richardson, 4th Edition, Cengage Learning	2000

6ME6.3A: MAINTENANCE MANAGEMENT

B.Tech. (Mechanical) $6^{\rm th}$ semester 3L+0T

UNIT	CONTENTS	CONTACT HOURS
	Introduction -Fundamentals of Maintenance Engineering. Maintenance Engineering its importance in material & energy conservation, inventory control, productivity, safety, pollution control etc.	3
I	Safety Regulations, pollution problems, human reliability, total quality management (TQM), total productivity maintenance (TPM), environmental issues in maintenance, ISO 9000.	4
п	Maintenance Management - types of maintenance strategies, Planned and unplanned maintenance, breakdown, preventive & predictive maintenance. Their comparison, advantages & disadvantages. Limitations.	4
	Computer aided maintenance, maintenance scheduling, spare part management, inventory control, organisation of maintenance department.	4
	Tribology in Maintenance, friction wear and lubrication, friction & wear mechanisms, prevention of wear, types of lubrication mechanisms, lubrication processes.	3
III	Lubricants - types, general and special purpose, additives, testing of lubricants, degradation of lubricants, seal & packings.	3
	Repair methods for basic machine elements: Repair methods for beds, slideways, spindles, gears, lead screws and bearings–Failure analysis–Failures and their development–Logical fault location methods–Sequential fault location.	3
IV	Machine Health Monitoring - Condition based maintenance, signature analysis, oil analysis, vibration, noise and thermal signatures, on line & off line techniques,	4
10	Instrumentation & equipment used in machine health monitoring. Instrumentation in maintenance, signal processing, data acquisition and analysis, application of intelligent systems, data base design.	4
v	Reliability, availability & maintainability (RAM) Analysis - Introduction to RAM failure mechanism, failure data analysis, failure distribution, reliability of repairable and non repairable systems.	4
	Improvement in reliability, reliability testing, reliability prediction, utilisation factor, system reliability by Monte Carlo Simulation Technique.	4
	TOTAL	40

Max. Marks: 100

Exam Hours: 3

TEX	т воок	
1	Anthony Kelly, Strategic Maintenance Planning, Butterworth-Heinemann	2006
2	R. C. Mishra, K. Pathak ,Maintenance Engineering and Management, PHI Learning Pvt. Ltd	2012
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Higgins L.R., "Maintenance Engineering Hand book", McGraw Hill	1988
2	Maintenance & Spare parts Management Gopal Krishnan	
3	Srivastava S.K., "Industrial Maintenance Management", S. Chand and Co	1981
4	Hand book of Condition Monitoring CNR Rao	
5	White E.N., "Maintenance Planning", I Documentation, Gower Press	1979
6	Armstrong, "Condition Monitoring", BSIRSA	1988
7	Davies, "Handbook of Condition Monitoring", Chapman &Hall,	1996

6ME7A: MACHINE DESIGN SESSIONAL-II

B.Tech. (Mechanical) 6th Semester 0L+0T+3P

OL+C	OT+3P	Exam Hours: 3	
SN	SESSIONAL WORK	CONTACT HOURS	
	Problems on:		
1	Fatigue loading.		
2	Helical compression, tension and torsional springs design.		
3	Curved Beams.		
4	Preloaded bolts and bolts subjected to variable stresses.		
5	Belt, Rope and Chain drive system.		
6	Gear Design.		
7	Sliding contact bearing design.		
8	Anti-friction bearing selection		

6ME8A: INDUSTRIAL ENGINEERING LAB-I

B.Tech. (Mechanical) 6th Semester Max. Marks: 75 0L+0T+2P Exam Hours: 2

SN	SESSIONAL WORK	CONTACT
		HOURS
1	Case study on X bar charts and process capability analysis	
2	P Chart: (a) Verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. (b) Plot a P-chart by taking a sample of n=20 and establish control limits	
3	To plot C-chart using given experimental setup	
4	Operating Characteristics Curve: (a) Plot the operating characteristics curve for single sampling attribute plan for n = 20; c = 1, 2, 3 Designate the red ball to defective. (b) Compare the actual O.C. curve with theoretical O.C. curve using approximation for the nature of distribution	
5	Distribution Verification: (a) Verification of Normal Distribution. (b) To find the distribution of numbered cardboard chips by random drawing one at a time with replacement. Make 25 subgroups in size 5 and 10 find the type of distribution of sample average in	

	each case. Comment on your observations	
6	Verification of Poisson distribution	
7	Central Limit Theorem: (a) To show that a sample means for a normal universe follow a normal distribution (b) To show that the sample means for a non normal universe also follow a normal Distribution.	
8	Solve problems using available Statistical Process Control software in lab	

6ME9A: MECHATRONICS LAB

B.Tech. (Mechanical) 6th Semester Max. Marks: 75 0L+0T+2P Exam Hours: 2

OL+C	FUI+2P Exam Hours: 2	
SN	SESSIONAL WORK	CONTACT HOURS
Perfo	rm any ten experiments from the list given below	
1	Study the following devices (a) Analog & digital multimeter (b) Function/ Signal generators (c) Regulated d. c. power supplies (constant voltage and constant current operations)	
2	Displacement Measurement using Capacitive & inductive Pick –ups.	
3	Study of Speed Measurement System: (a) Magnetic Pick-up (b) Stroboscope	
4	Study of Load Measurement System Load Cell	
5	Measurement of temperature using thermocouple, thermistor and RTD	
6	Measurement of displacement using POT, LVDT & Capacitive transducer	
7	Torque measurement using torque measuring devices	
8	Strain Measurement using strain gauge	
9	Frequency to Voltage Converter and vice versa	
10	Position and velocity measurement using encoders	
11	Study on the application of data acquisition system for industrial purposes	
12	Speed control of DC motor using PLC.	
13	Study of Load Measurement System Load Cell	

6ME10A: VIBRATION ENGINEERING LAB.

B.Tech. (Mechanical) 7th Semester Max. Marks: 75 0L+0T+2P Exam Hours: 2

SN	NAME OF EXPERIMENT	CONTACT HOURS
1	To verify relation T = $2\pi\sqrt{(1/g)}$ for a simple pendulum.	
2	To determine radius of gyration of compound pendulum.	
3	To determine the radius of gyration of given bar by using bifilar suspension.	
4	To determine natural frequency of a spring mass system.	
5	Equivalent spring mass system.	
6	To determine natural frequency of free torsional vibrations of single rotor system. i. Horizontal rotor ii. Vertical rotor	
7	To verify the Dunkerley's rule.	
8	Performing the experiment to find out damping co-efficient in case of free damped torsional vibration	
9	To conduct experiment of trifler suspension.	
10	Harmonic excitation of cantilever beam using electro-dynamic shaker and determination of resonant frequencies.	

11	Study of Vibration measuring instruments.	
12	Perform study of the following using Virtual Lab http://www.vlab.co.in/	
13	Forced Vibration of a Cantilever Beam with a Lumped Mass at Free End:	
	To calculate the natural frequency and damping ratio for forced vibration	
	of a single DOF cantilever beam system, experimentally; and compare	
	the results with theoretical values.	
14	Harmonicaly Excited Forced Vibration of a Single DOF System: To	
	analyze the forced vibration response of a single DOF system at different	
	damping ratio and frequency ratio.	
15	Perform study of the following using Virtual Lab http://www.vlab.co.in/	
16	Forced Vibration of a Cantilever Beam with a Lumped Mass at Free End:	
	To calculate the natural frequency and damping ratio for forced vibration	
	of a single DOF cantilever beam system, experimentally; and compare	
	the results with theoretical values.	
17	Harmonicaly Excited Forced Vibration of a Single DOF System: To	
	analyze the forced vibration response of a single DOF system at different	
	damping ratio and frequency ratio.	

7ME1A: FINITE ELEMENT METHODS

B.Tech. (Mechanical) 7th semester 3L+0T

3L+0T	+OT Exar	
UNIT	CONTENTS	CONTACT
ı	Introduction to FEM and its applicability, Review of :Matrix algebra, Gauss elimination method, Uniqueness of solution, Banded symmetric matrix and bandwidth.	4
1	Structure analysis: Two-force member element, Local stiffness matrix, coordinate transformation, Assembly, Global stiffness matrix, imposition of Boundary conditions, Properties of stiffness matrix	4
II	One-dimensional Finite Element Analysis: Basics of structural mechanics, stress and strain tensor, constitutive relation, Principle of minimum Potential, General steps of FEM, Finite element model concept / Discretization, Derivation of finite elements, equations using	
_	potential energy approach for linear and quadratic 1-D bar element, shape functions and their properties, Assembly, Boundary conditions, Computation of stress and strain.	3
	Two Dimensional Finite Element Analysis: Finite element formulation using three nodded triangular (CST) element, Plane stress and Plain strain problems,	4
III	Shape functions, node numbering and connectivity, Assembly, Boundary conditions, Isoparametric formulation of 1-D bar elements,	2
	Numerical integration using gauss quadrature formula, computation of stress and strain.	2
IV	Finite Element Formulation from Governing Differential Equation: Method of Weighted Residuals, Collocation, Sub domain method, Least Square method and Galerkin's	
	method, Application to one dimensional problems, one-dimensional heat transfer, etc. introduction to variational formulation (Ritz Method.)	3
	Higher Order Elements: Lagrange's interpolation formula for one and two independent variable, Convergence of solution, compatibility, element continuity, static condensation, p and h methods of mesh	
V	refinement, Aspect ratio and element shape,	5
	Application of FEM, Advantages of FEM, Introduction to concept of element mass matrix in dynamic analysis.	3
	TOTAL	40

TEX	Т ВООК	
1	Seshu P.,"Text Book of Finite Element Analysis", Prentice Hall India	2003
REF	PERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Dixit, U. S., "Finite Element Methods for Engineers" Cengage Learning	2003
2	Finite Element Procedure in Engineering Analysis, Bathe K.J., Prentice Hall India.	2001
3	An Introduction to the Finite Element Method, Reddy J.N., Tata McGraw-Hill, New Delhi	1993
4	Concepts & Applications of Finite Element Analysis, Cook and Plesha, Willey India New Delhi.	2007
5	Introduction to Finite Elements in Engineering, Chandupatla and Belegundu, Prentice Hall India.	1999

7ME2A: REFRIGERATION AND AIR CONDITIONING

B.Tech. (Mechanical) 7th Semester Max. Marks: 100
3L+1T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
	Introduction: Refrigeration and second law of Thermodynamics, Refrigeration effect and unit of Refrigeration, Heat pump, reversed	HOUND
	Carnot cycle. Vapour Compression Refrigeration System: Analysis of simple vapour compression Refrigeration cycle by p-h and T-S diagram. Effect	
I	of operating conditions	5
	Multiple Evaporator and compressor system: Application, air	
	compressor system, Individual compressor, compound compression, cascade system. Application, air compressor systems, individual	
	compressor, compound compression, cascade system.	3
II.	Gas Cycle Refrigeration: Limitation of Carnot cycle with gas, reversed Brayton cycle, Brayton cycle with regenerative heat exchanger.	4
11	Air cycle for air craft: Necessity of cooling of air craft, Basic cycle, boot strap, regenerative type air craft refrigeration cycle.	4
	Other refrigeration systems (description only): Vapour absorption refrigeration system, Electrolux refrigerator, Lithium Bromide - Water system, Water vapour refrigeration system, Vortex tube refrigeration system, thermo electric refrigeration system.	4
III	Refrigerants: Classification, Nomenclature, selection of Refrigerants, global warming potential of CFC Refrigerants. Refrigeration Equipments: Compressor, condenser, evaporator, expansion devices, types & working.	4
IV	Psychrometry: Psychrometric properties, psychometric relations, pyschrormetric charts, psychrometric processes, cooling coils, By-pass factor, Apparatus Dew point temperature and air washers.	5
	Human Comfort: Mechanism of body heat losses, factors affecting human comfort, effective temperature, comfort chart.	3
	Cooling load calculations: Internal heat gain, system heat gain, RSHF, ERSHF, GSHF, cooling load estimation, heating load estimation,	_
V	psychrometric calculation for cooling.	5
	Selection of air conditioning: Apparatus for cooling and dehumidification, Air conditioning system, year round air conditioning.	3
	TOTAL	40

TEX	T BOOK	
1	Arora, C.P., Refrigeration and Air Conditioning, Tata McGraw Hill	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Stoecker W.F., "Refrigeration & Air Conditioning" McGraw Hill Publication.	2000
2	Andrew D. Althouse., "Modern Refrigeration & Air Conditioning" GoodHeart-Willcox Co.	2002
3	Jorden & Priester, Refrigeration & Air Conditioning, Prentice Hall of India.	2003
4	Roy J. Dossat, Principal of Refrigeration, Pearson Education, New Delhi.	2014
5	Edward G. Pita, Air Conditioning Principles and Systems, Pearson Education, New Delhi.	2003
6	Jain V.K., Refrigeration & Air Conditioning, Tata McGraw Hill New Delhi.	2004

7ME3A: OPERATIONS RESEARCH

B.Tech. (Mechanical) 7th semester 3L+1T

UNIT	CONTENTS	CONTACT HOURS
	Overview of Operations Research	1
I	Linear Programming : Applications and model formulation, Graphical method, Simplex method, duality and Sensitivity analysis. Transportation Model and Assignment Model including travelling	4
	salesman problem.	4
	Integer Linear Programming: Enumeration and cutting Plane	
	solution concept, Gomory's all integer cutting plane method, Branch	
II	and Bound Algorithms, applications of zero-one integer programming.	5
	Replacement Models: Capital equipment replacement with time, group replacement of items subjected to total failure.	3
	Queuing Theory: Analysis of the following queues with Poisson	
	pattern of arrival and exponentially distributed service times, Single	
	channel queue with infinite customer population, Multichannel queue with infinite customer population,	3
	Competitive Situations and Solutions: Game theory, two person zero	3
III	sum game, saddle point, minimax (maximin) method of optimal	
	strategies, value of the game. Solution of games with saddle points,	
	dominance principle. Rectangular games without saddle point - mixed	
	strategy, approximate solution, and simplified analysis for other	
	competitive situations. Application of linear programming	4
	Theory of Decision making: Decision making under certainty, risk and	_
	uncertainty. Decision trees.	5
	Deterministic Inventory control models: functional role of inventory, inventory costs, model building, Single item inventory control model	
IV	without shortages, with shortage and quantity discount. Inventory	
	control model with uncertain demand, service level, safety stock, P and	
	Q systems, two bin system. Single period model. Selective Inventory	
	control techniques.	4
	Probabilistic Inventory control models: Instantanoues demand	
v	without setup cost and with setup cost, Continuous demand without	4
_ v	setup cost Simulation : Need of simulation, advantages and disadvantages of	4
	simulation method of simulation. Generation of Random numbers,	
	Generation of Normal Random numbers. Use of random numbers for	4

Max. Marks: 100

Exam Hours: 3

	system simulation., Monte Carlo simulation, simulation language ARENA, Application of simulation for solving queuing Inventory	
	Maintenance, Scheduling and other industrial problems	
ĺ	TOTAL	40

TEX	т воок	
1	Operations Research, Ravindran, Phillips and Solberg, Wiley India.	
REI	PERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Introduction to Operations Research, Hillier F.S. and Lieberman G.J., CBS Publishers.	
2	Operations Research, Taha H.A., Pearson Education	
3	Linear Programming and Network Flows, Bazaraa, Jarvis and Sherali, Wiley India.	
4	Principles of Operations Research, Wagner H.M., Prentice Hall of India.	
5	Operations Research, Gupta and Heera, S. Chand Publications.	

7ME4A: TURBOMACHINES

B.Tech. (Mechanical) 7th Semester 3L+0T

UNIT	CONTENTS	CONTACT HOURS
	Basic Concepts of Turbo Machines: Definition & classification of	
	Turbo machine, Basic laws and governing equations: continuity	
	equation, steady flow energy equation(1st law of thermodynamics),2nd	
	law of thermodynamics applied to turbo machines, Newton's 2nd law of	
	motion applied to turbomachines - Euler's pump equation and Euler's	
I	turbine equation	4
	Dimensional analysis applied to hydraulic machines, power coefficient,	
	flow coefficient, head coefficient, non-dimensional specific speed, Range	
	of specific speeds for various turbo machines, Dimensional analysis	
	applied to compressible flow machines, pressure ratio as a Function of	
	temperature ratio, mass flow rate parameter and speed parameter	4
	Centrifugal Compressors and Fans: Components and description,	
	velocity iagrams, slip factor, energy transfer, power input factor, stage	
	pressure rise and loading coefficient, pressure coefficient, degree of	
	reaction, Centrifugal compressor characteristic, surging, rotating Stall	3
	and Choking	
	Axial Flow Compressors and Fans: Basic constructional features,	
II	Advantages of axial flow compressors, working principle, velocity	
	triangle, elementary theory, stage work, work done factor, stage	
	loading, degree of reaction; vortex theory, simple design calculations,	
	introduction to blade design, cascade test, compressibility effects,	
	operating characteristics	3
	Reciprocating Compressors: Basic constructional features, working	•
	principle, work done calculation, single and double acting compressors	2
	Centrifugal Pumps: Main parts, work done and velocity triangles, slip	
	and slip factor, pump losses and efficiencies, minimum starting speed,	3
	net positive suction head, performance curve.	3
III	Axial Flow Pumps: Description, velocity triangles, work done on the	3
	fluid, energy transfer, axial pump characteristics, cavitation. Reciprocating Pumps: Classification, component and working, single	<u> </u>
	acting and double acting, discharge, work done and power required,	
	coefficient of discharge, indicator diagram, slip, effect of friction and	2
	coefficient of discharge, indicator diagram, sup, effect of inchon and	4

Max. Marks: 100 Exam Hours: 3

	acceleration, theory of air vessels.	
	Gas power cycles : Ideal and practical gas turbine cycle, heat exchange cycle, reheat cycle, intercooled cycle, Comparison of various cycles.	4
IV	Thermodynamic Cycles : Advantages, disadvantages and performance characteristics of Ram jet engine, pulse jet engine, turbo prop engine, turbo jet engine, turbo fan engine, Calculation of specific thrust and	_
	efficiency Gas Turbines: impulse and reaction type gas turbines, Velocity	4
v	triangles and calculation of work done, efficiency etc.	8
	TOTAL	40

TEX	T BOOK	
1	Gas turbines, V. Ganesan, Tata McGraw-Hill	
2	Subramanya, K., Hydraulic Machine, Tata McGraw Hill	2013
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Principle of Turbo Machinery, Turton R.K., Springer Publication	1994
2	Fundamentals of Turbo Machinery, William W., John Wiley and Sons.	2008
3	Turbo Machinery Basic Theory and Application, Logan E.J.	1981
4	Principles of Turbo Machinery, Shepherd Dennis G., Mac Millan Publisher, New York.	1956
5	TurboMachines, A Valan Arasu, Vikas Publishing House Pvt. Ltd.	2009
7	Gas turbine theory, Cohen and Saravanamutto, Pearson Educational Publication	2009
8	Hydraulic Machine: Turbines and Pumps, Nazarov N.T., Springer New York.	2003
9	Gas Turbine Theory, Cohen and Roger, Pearson Education.	
10	Hydraulic Machinery, Jagdish Lal, Metropolitan Books.	

7ME5A: OPERATIONS MANAGEMENT

B.Tech. (Mechanical) 8th semester 3L+0T

3L+01	OT Exam	
UNIT	CONTENTS	CONTACT HOURS
	Introduction to operations management (OM), the scope of OM; Historical evolution of OM; Trends in business; the management process. Operations Strategy, Competitiveness and Productivity	3
I	Demand Forecasting: components of forecasting demand, Approaches to forecasting: forecasts based on judgment and opinion, Time series data. Associative forecasting techniques, Accuracy and	
	control of forecasts, Selection of forecasting technique.	3
	Product and Service design, Process selection, Process types, Product and process matrix, Process analysis.	3
п	Capacity Planning: Defining and measuring capacity, determinants of effective capacity, capacity strategy, steps in capacity planning process, determining capacity requirements, Capacity alternatives,	
	Evaluation of alternatives; Cost-Volume analysis.	2
***	Facility Location: Need for location decisions, factors affecting location, qualitative and quantitative techniques of location. Facilities layout: Product, Process, Fixed position, combination and cellular layouts;	
III	Designing product and process layout, line balancing. Material Handling	4
İ	Planning levels: long range, Intermediate range and Short range	4

	planning, Aggregate planning: Objective, Strategies, and techniques of	
	aggregate planning. Master scheduling; Bill of materials, MRP; inputs	
	processing and outputs, and overview of MRPII, use of MRP to assist	
	in planning capacity requirements, Introduction to ERP	
	Production Control: Capacity control and priority control, production	
	control functions; Routing, scheduling, dispatching, expediting and	
	follow up. Techniques of production control in job shop production,	
IV	batch production and mass production systems. sequencing: priority	
	rules, sequencing jobs through two work centers, scheduling services	4
	Introduction to Just-in-time (JIT) and Lean Operations: JIT production,	
	JIT scheduling, synchronous production, Lean operations system	4
	Supply Chain Management (SCM): Need of SCM, Bullwhip effect,	
	Elements of SCM, Logistics steps in creating effective supply chain,	
v	Purchasing and supplied management.	3
V	Project Management: Nature of projects, project life cycle, Work	
	breakdown structure, PERT and CPM, Time-Cost trade-offs: Crashing.	
	Resource allocation, leveling	5
	TOTAL	40

TEX	TT BOOK	
1	Stevenson, Operations Management, Tata McGraw Hill.	2009
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Roberta S. Russell, Bernard W. Taylor, Operations Management, John Wiley & Sons	2010
2	Joseph S. Martinich, Production And Operations Management, John Wiley & Sons	2008
3	S.N. Chary, Production and Operations Management, Tata McGraw Hill	2009
4	Norman Gaither, Greg Frazier, Operations Management, Thomson Learning	2002
5		

7ME6.1A MICRO AND NANO MANUFACTURING

B.Tech. (Mechanical) 7th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
	Nanoscale Cutting:- Introduction, Material representation and microstructure, Atomic interaction; Nonomachining:- Introduction, Nanometric machining, Theoretical basis of machining;	4
I	Meso-micromcahining:- Introduction, size effects in micromachining, mechanism for large plastic flow, origin of the size effect, Meso-machining processes. Product quality in micromachining, Burr formation in micromachining operations.	4
	Microturning:- Characteristic features and applications, Microturning tools and tooling systems, Machine tools for microturning	2
II	Microdrilling: Characteristic features and applications, Microdrills and tooling systems, Machine tools for microdrilling Micromilling:- Characteristic features and applications, Micromills and	2

	tooling systems, Machine tools for micromilling,	
	Micro machining high aspect ratio microstructures, micromolding,	
	micromolding processes, micromolding tools, micromold design,	
	micromolding applications, limitations of micromolding.	3
	Microgrinding and Ultra-precision Processes: Introduction, Micro	
	and nanogrinding, Nanogrinding apparatus, Nanogrinding procedures,	
	Nanogrinding tools, Preparation of nanogrinding wheels, Bonding	4
	systems, Vitrified bonding	4
III	Non-Conventional Processes: Laser Micromachining:- Introduction,	
	Fundamentals of lasers, Stimulated emission, Types of lasers, Laser microfabrication, Nanosecond pulse microfabrication, Shielding gas,	
	Effects of nanosecond pulsed microfabrication, Picosecond pulse	
	microfabrication, Femtosecond pulse microfabrication, Laser	
	nanofabrication.	4
	Diamond Tools in Micromachining: Introduction, Diamond	
	technology, Hot Filament CVD (HFCVD), Preparation of substrate,	
	Selection of substrate material, Pre-treatment of substrate, Modified	
IV	HFCVD process.	4
1 *	Deposition on complex substrates, Diamond deposition on metallic	
	(molybdenum) wire, Deposition on WC-Co microtools, Diamond	
	deposition on tungsten carbide, (WC-Co) microtool, Performance of	_
	diamond-coated microtool	4
	Evaluation of Subsurface Damage in Nano and Micromachining:	
	Introduction, Destructive evaluation technologies, Cross-sectional	
	microscopy, Preferential etching, Angle lapping/angle polishing, X-ray	4
v	diffraction, Micro-Raman spectroscopy. Applications of Nano and Micromachining in Industry: Introduction,	4
\ \ \	Typical machining methods, Diamond turning, Shaper/planner	
	machining, Applications in optical manufacturing, Aspheric lens,	
	Fresnel lens, Microstructured components, Semiconductor wafer	
	production.	5
	TOTAL	40

TEX	т воок	
1	Micro and Nano manufacturing by Marks J. Jackson springer	2008
REF	ERENCE BOOKS	
		37 C
SN	Name of Authors /Books /Publisher	Year of Pub.

7ME6.2A: ROBOTICS

B.Tech. (Mechanical) 7th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
	Introduction to Robotics: Evolution of Robots and Robotics, Laws of	
	Robotics, What is and What is not a Robot, Progressive Advancement	
т .	in Robots.	3
1	Robot Anatomy, Human Arm Characteristics, Design and Control	
	Issues, Manipulation and Control, Sensors and Vision, Programming	
	Robots, The Future Prospects, Notations.	5
II	Robot End Effectors: Classification of end effectors, drive system for	
11	grippers, Mechanical, Magnetic, Vaccum, Adhesive grippers, Hooks,	4

	Scoops, Miscellaneous devices, Gripper force analysis and Design,	
	Active and Passive Gripeers Coordinate Frames, Mapping and Transforms: Coordinate Frames, Description of Objects in Space, Transformation of Vectors, Inverting a Homogeneous Transform, Fundamental Rotation Matrices.	4
	Symbolic Modeling of Robots: Direct Kinematic Model, Mechanical Structure and Notations, Description of Links and Joints, Kinematic Modeling of the Manipulator,	3
III	Denavit – Hartenberg Notation, Kinematic Relationship between Adjacent Links, Manipulator Transformation Matrix. Introduction to Inverse Kinematic model, Solvability of Inverse Kinematics model, Solution techniques.	5
	Robotic Sensors: The Meaning of Sensing, Sensors in Robotics, Kinds of Sensors used in Robotics, Choosing the right sensors	3
IV	Robotic vision: Introduction to Robotic Vision, Industrial Applications of Vision-Controlled Robotic Systems, Process of Imaging, Architecture of Robotic Vision Systems, Image Acquisition, Image Representation and Image Processing	5
	Robot Applications: Industrial Applications, Material Handling, Processing Applications, Assembly Applications, Inspection Application, Principles for Robot Application and Application Planning,	_
V	Justification of Robots, Robot Safety, Non-Industrial Applications. Robot Programming: Robot languages, Classification of Robot language, Computer control and robot software, VAL system and language	4
	TOTAL	40

TEX	T BOOK	
1	Mittal R.K., Nagarath, I.K., Robotics and Control, Tata Mc Graw Hill,	2007
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Deb S.R., Robotics Technology and Flexible Automation, Tata McGraw Hill	2010
2	Ghoshal, A., Robotics Fundamental Concepts and Analysis, Oxford University Press	2010
3	Craig JJ, Introduction to Robotics, Mechanics and Control, Addison-Wesley, 2 nd Ed.	2004
4	Fu, K.S., Gonzales, R.C. and Lee, C.S.G., Robotics: Control, Sensing, Vision and Intelligence, McGraw Hill	1987
5	Groover, M. P., Wiess, M., Nagel, R. N. and Odery, N. G. Industrial Robotics- Technology, Programming and Applications, McGraw Hill Inc. Singapore	2000
9		

7ME6.3A: CNC MACHINES AND PROGRAMMING

B.Tech. (Mechanical) 7th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
_	Introduction: Definition of NC, Applications of NC ,Historical	
I	Developments in Automation, Classification of NC Systems,	
	Comparison of NC and Conventional Machines, Advantages of NC	8
	NC Hardware: Architecture of NC Systems, Design Considerations,	
***	Mechanical Elements, Structure, Guideways and Slides, Guideway	
II	Elements, Transmission Systems, Spindle Unit, Coolant system,	
	Lubrication System, Tool and work Changing Mechanisms, Electrical	8

	Elements, Drives, Sensors, Control Loops, Computing Elements/	
	Firmware, Interpolators	
	NC Software: Introduction, Manual Part Programming, Computer-	
III	Assisted Part Programming, Language Based, Geometric Modeling	
	Based, Automatic Part Program Generation,	8
IV	CAPP Systems, 5 Axis Programming, Post-Processing, Programming	
10	Robots and CMMs	4
	NC Simulation, Kinematic simulation, Volumetric simulation,	
	Applications of Volumetric NC Simulation, Verification	4
	Advanced Topics:, Adaptive Control, Off-line adaptive control, Various	
v	optimisation criteria, Hardware Based AC, Software Based AC, Tooling	
V	and Instruments for NC Special Considerations in High Speed Cutting	
	(HSC) and Die Sinking, Rapid Product Development, CAM, FMS, CIM	8
	TOTAL	40

TEX	т воок	
1	Krar S. and Gill A., CNC: Technology and Programming, McGraw Hill	1990
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Koren Y., Computer Control of Manufacturing Systems, Tata McGraw Hill.	1983
2	Pressman R.S. and Williams J.E., Numerical Control and Computer-Aided Manufacturing, John Wiley & Sons	1977,
3	Jones B.L., Introduction to Computer Numerical Control, John Wiley & Sons.	1986
4	Kral I.H., , Numerical Control Programming in APT, Prentice-Hall	1986
5	Chang C.H. and Melkanoff M.A., ,NC Machine Programming and Software Design, Prentice-Hall	1986

7ME7A: THERMAL ENGINEERING LAB-II

B.Tech. (Mechanical) 7th Semester Max. Marks: 100 0L+0T+3P Exam Hours: 3

SN	LABORATORY WORK/NAME OF EXPERIMENT	CONTACT HOURS
1	To perform constant speed load test on a single cylinder diesel engine and	
	to plot performance curves: indicated thermal efficiency, brake thermal	
	efficiency, mechanical efficiency Vs. Brake power, and heat balance sheet.	
2	To estimate the Indicated Power, Friction Power and Mechanical Efficiency	
	of a multi-cylinder Petrol Engine. (Morse Test)	
3	Analysis of engine exhaust gases using Orsat apparatus / gas analyzer.	
4	To study refrigeration cycle, determination of coefficient of performance of	
	cycle and tonnage capacity of refrigeration unit.	
5	To determine the COP and tonnage capacity of a Mechanical heat pump.	
6	To study various controls used in Refrigeration and Air conditioning	
	system.	
7	Determination of dryness fraction of steam.	
8	Study and Performance of Simple Steam Turbine	
9	Performance characteristics of Pelton wheel turbine.	
10	Performance characteristics of Francis turbine.	
11	Performance characteristics of Kaplan turbine.	
12	Performance characteristics of variable speed centrifugal pump.	
13	Performance characteristics of rated speed centrifugal pump.	

7ME8A: FINITE ELEMENT LAB.

Max. Marks: 100

Max. Marks: 100

B.Tech. (Mechanical) 7th Semester 0L+0T+3P

OL+O	T+3P Exa	m Hours: 3
SN	LABORATORY WORK/NAME OF EXPERIMENT	CONTACT HOURS
1	Laboratory work for the solution of solid mechanics problems, heat transfer problems, and free vibration problems A: by using FE packages such as NASTRAN/ ANSYS/ SIMULIA/ ABAQUS	
2	Introduction of GUI of the software in the above mentioned areas realistic problems.	
3	Analysis of beams and frames (bending and torsion problems)	
4	Plane stress and plane strain analysis problems	
5	Problems leading to analysis of axisymmetric solids	
6	Problems leading to analysis of three dimensional solids (a) Heat transfer problems (b) Modal analysis problem	
	B: by writing own code for finite element analysis using MATLAB	
	for:	
7	Plane stress and plane strain analysis problems	
8	Modal Analysis problem	

8ME1A: COMPUTER INTEGRATED MANUFACTURING SYSTEMS

B.Tech. (Mechanical) 8th semester 3L+0T

3L+01	T Exan	
UNIT	CONTENTS	CONTACT HOURS
	Introduction to CIM: Overview of Production Systems, the product cycle, Automation in Production Systems, computer's role in manufacturing, sources and types of data used in manufacturing. The Beginning of CAM: Historical Background,	2
I	Numerical Control (NC): Basic components of an NC system, coordinate system and motions control systems. Computer Numerical Control (CNC): features of CNC, machine control unit, CNC software. Direct Numerical Control and Distributed Numerical Control. Applications, advantages and disadvantages of NC. Adaptive control of machining system.	3
п	NC Part programming: Manual and computer assisted part programming, Part programming with APT. NC part programming using CAD/CAM software. NC cutter path verification.	8
III	Computer Aided Process Planning: Traditional Process Planning, Retrieval process planning system, Generative Process Planning, Machinability data systems, computer generated time standards.	4
	Group Technology: Introduction, part families, part classification and coding, coding system and machining cells.	4
IV	Computer Aided Production Management Systems: Introduction to computer aided PPC, Introduction to computer aided inventory management, manufacturing resource planning (MRPII), computer process monitoring and shop floor control, computer process control.	6
14	Computer Aided Quality Control; Computer in quality control, contact inspection methods, Non contact inspection methods, optical and non optical computer aided testing.	2
V	Computer Aided Material Handling; Computer control on material handling, conveying, picking. Ware house control, computerized material handling for automated inspection and assembly.	

Computer Integrated Manufacturing Systems: Introduction, types	
special manufacturing systems, flexible manufacturing systems (FMS).	5
Collaborative Engineering; Introduction, Faster Design throughput,	
Web based design, Changing design approaches, extended enterprises,	
concurrent engineering, Agile and lean manufacturing.	3
TOTAL	40

TEXT BOOK		
1	Mikell P. Groover, , Automation, Production Systems, and Computer- Integrated Manufacturing, 3rd ed., Pearson/Prentice Hall,	2008
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	James A. Rehg and Henry W. Kraebber, 2005, Computer-Integrated Manufacturing, 3rd ed., Pearson/Prentice Hall,	
2	Nanua Singh, 1996, Systems Approach to Computer-Integrated Design and Manufacturing, John Willey & Sons.	
3	Computer Aided Manufacturing, Chang, Wysk and Wang, Pearson Education	
4	CAD/CAM: Principles and Applications, P.N. Rao, McGraw Hill	
5	Computer Control of Manufacturing Systems, Y. Koren, McGraw Hill	
6	Computer aided Manufacturing, Rao, Tiwari and Kundra, Tata McGraw Hill.	
7	Computer Numerical Control: Machining and Turning Centres, Quesada and Jeyepoovan, Pearson Education	

8ME2A: LAWS FOR ENGINEERS

B.Tech. (Mechanical) 8th semester

3L+0T Exam Hours: 3 CONTACT UNIT **CONTENTS** HOURS Constitutional Law: The Preamble; Fundamental Rights; Directive principles of State policy; Fundamental Duties; Emergency provisions - kinds, legal requirements and legal effects. 5 General Principles of Contract under Indian Contract Act, 1872: General principles of contract – Sec. 1 to 75 of Indian Contract Act and Ι including Government as contracting party, Kinds of government contracts and dispute settlement, Standard form contracts; nature, advantages, unilateral character, principles of protection against possibility of exploitation, judicial approach to such contracts, exemption clauses, clash between two standard form contracts. 4 Introduction to Human Rights: Theoretical foundation, Historical development of human rights; Human Rights in Indian tradition and Western tradition; Covenant on Civil & Political Rights 1966 including Optional Protocol - I (Individual Complaint Mechanism) & Optional Protocol - II (Abolition of Death Penalty); Covenant on Economic, Social II and Cultural Rights 1966 including Optional Protocol - I (2002); 4 Enforcement of Human Rights in India including Supreme Court, High Courts, Statutory Commissions - NHRC, NCW, NCM, NC-SC/ST etc. 4 **Labour Laws:** Industrial Disputes Act, 1947; Collective bargaining; Industrial Employment (Standing Orders) Act, 1946; Workmen's Compensation Act, 1923. 3 Right to Information Act, 2005: Evolution and concept; Practice and Ш procedures; Official Secret Act, 1923; Indian Evidence Act, 1872; 3

	Information Technology - legislation and procedures, Cyber crimes -				
	issues and investigations.				
	Law relating to Intellectual property: Introduction–meaning of intellectual property, main forms of IP, Copyright, Trademarks, Patents and Designs, Secrets; International instruments on IP – Berne				
	convention, Rome convention, TRIPS, Paris convention and international organizations relating IPRs, WTO etc;	4			
	Law relating to Copyright in India, Meaning of copyright – literary, dramatics and musical works, sound records and cinematographic films, computer programs, Ownership of copyrights, Criteria of infringement, Piracy in Internet – Remedies and procedures in India;	1			
IV	Law relating to Trademarks under Trademark Act, 1999 including Rationale of protection of trademarks as Commercial aspect and Consumer rights, Trademarks, registration, procedures, Distinction between trademark and property mark, Doctrine of deceptive				
	similarity, Passing off an infringement and remedies; Law relating to Patents under Patents Act, 1970, Patentable inventions with special reference to biotechnology products, Patent protection for computer programs, Process of obtaining patent –application, examination, opposition and sealing of patents, Patent cooperation treaty and grounds for opposition, Rights and obligations of patentee, Duration of patents – law and policy considerations, Infringement and related remedies.	3			
	Corporate Law : Meaning of corporation; Law relating to companies, public and private (Companies Act, 1956) general provisions; Law and multinational companies – International norms for control, FEMA 1999, Corporate liability, civil and criminal.	4			
v	Election provisions under Indian Constitution (Art.324–329): Representation of Peoples Act and Prevention of Corruption Act, 1988; Superintendence, directions and control of elections to be vested in Election Commission; Election to the house of people and to the legislative assemblies of States to be on the basis of adult suffrage.				
	Candidate electoral rights.	3			
	TOTAL	40			

REF	REFERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	D.D. Basu, Shorter Constitution of India, Prentice Hall of India	1996
2	M.P. Jain, Indian Constitutional Law, Wadhwa & Co.	2005
3	S.K. Awasthi & R.P. Kataria, Law relating to Protection of Human Rights, Orient Publishing	2006
4	S.K. Kapur, Human Rights under International Law and Indian Law, Central Law Agency	2001
5	Avtarsingh, Law of Contract, Eastern Book Co	2002
6	Wadhera , Intellectual Property Rights, Universal Law Publishing Co	2004
7	T. Ramappa, Intellectual Property Rights Law in India, Asia Law House	2010
8	O.P. Malhotra, Law of Industrial Disputes, N.M. Tripathi Publishers	·

8ME3A: POWER GENERATION

B.Tech. (Mechanical) 8th Semester

 Exam Hours: 3

 UNIT
 CONTENTS
 CONTACT HOURS

 I
 Introduction to economics of power generation: Load duration
 7

	curves, location of power plants, power plant economics.	
II	Analysis of Steam Power Plants (SPP): Components of steam power plants, Effect of variations, variation of steam condition on thermal efficiency of steam power plant. Typical layout of SPP. Efficiencies in a SPP.	9
Ш	Analysis of Hydroelectric Power Plants (HEPP): Components of HEPP, Typical layout of HEPP, Performance of turbines and comparison.	4
111	Analysis of Diesel and Gas Turbine Power Plants: General layout of Diesel and Gas Turbine power plants, Performance of Diesel and Gas Turbine power plants, comparison with other types of power plants.	4
IV	Wind Energy: Wind energy potential measurement, general theories of wind machines, basic laws and concepts of aerodynamics, aerofoil design; wind mill and wind electric generator. Description and performance of the horizontal–axis wind machines. Description and performance of the vertical–axis wind machines. The generation of	
v	electricity by wind machines, Solar radiation: its measurement and prediction. Flat plate collectors, liquid and air type. Theory of flat plate collectors, advanced collectors, optical design of concentrators, selective coatings, solar water heating, thermal storage. Conversion of heat into mechanical energy. Solar cells, photovoltaic effect, performance of a solar cell, P-V material, performance of solar cells, P-V modules. Solar P-V plants, Economies of solar photovoltaic's.	
	*	40

	т воок	
1	P.K.Nag, Power Plant Engineering, Tata McGraw Hill	2008
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Hau E., Wind Turbines: Fundamentals, Technologies, Application and Economics, Springer	2000
2	Mathew S., Wind Energy: Fundamentals, Resource Analysis and Economic s, Springer	2006
3	Burton T. Sharpe D. Jenkins N. and Bossanyi E., Wind Energy Handbook, John Wiley	2001
4	Jiandong T. (et al.) , Mini Hydropower, John Wiley	
5	Duffie J. A. and Beckman W. A. ,Solar Engineering of Thermal Processes, John Wiley	1997
6	Goswami D. Y. Kreith F. and Kreider J. F. Principles of Solar Engineering, Taylor and Francis	2006
7	Garg H. P. and Prakash S.Solar Energy: Fundamental and Application, Ta ta McGraw Hill	1999
8	Green M.,Third Generation Photovoltaics: Advance Solar Energy, Springer	1997
9	Tiwari G. N., Solar Energy: Fundamentals, Design, Modeling and Applications, Narosa	2005
10	Johnson G. L.Wind Energy Systems (Electronic Edition), Prentice Hall	2002
11	Wagner H. and Mathur J. Introduction to Hydro energy Systems : Basics, Technology and Operation, Springer	2006
12	Nayak J. K. and Sukhatme S.P. Solar Energy: Principles of Thermal Colle ction and Storage, Tata McGraw Hill	2011
13	Solanki C. S. Solar Photovoltaics: Fundamentals, Technologies and Applications, Prentice Hall India	2006
14	F.T.Morse, D.Van.Nostran, Power Plant Engineering, Newyork,	2009
15	Johnson G. L.Wind Energy Systems (Electronic Edition), Prentice Hall	1953

16	Wagner H. and Mathur J. Introduction to Hydro energy Systems : Basics, Technology and Operation, Springer	2006
17	M.M.EI- Wakil, Power Plant Technology, McGraw Hill	1984

8ME4.1A: PRODUCT DEVELOPMENT AND LAUNCHING

B.Tech. (Mechanical) 8th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
I	Importance of New Product: Definition-importance-Development Process, Importance of new product for growth of enterprise, Definition of product and new product,	2
	Responsibility for new product development, Demands on product development team, Classification of products from new product development point of view- Need based/Market pull products, Tech. push, Platform based, Process based and customized products,	3
	New product development process and organization, Generic product development process for Market Pull Products, Modification of this process for other types of products.	3
II	Need Analysis: Problem Formulation Establishing economic existence of need, Need Identification and Analysis, Engineering Statement of Problem, Establishing Target Specification.	8
Ш	Generation of Alternatives and Concept Selection: Concept generation- a creative process, Creativity, Road Elects to creative thinking-Fear of criticism and Psychological set, Tools of creativity like brain storming, Analogy, Inversion etc., Creative thinking Process, Concept feasibility and Concept Selection,	4
IV	Establishing Engineering Specification of Products. Preliminary and Detailed Design: Design Review Preliminary design- Identification of subsystems, Subsystem specifications, Compatibility, Detailed design of subsystems, component design, Preparation of assembly drawings, Review of product design from point	6
	of view of Manufacturing, Ergonomics and aesthetics.	2
v	Management of New Product: Development and Launch New Product Management's Challenges, Maintaining focus, Promotion of Right Culture, Management of Creativity, Top Management attention, Design Team Staffing and Organization, Setting key mile stone, Identification of Risk Areas, Project Execution and Evaluation Product Launch	8
	Strategies, TOTAL	40

TEX	т воок	
1	Product Design and Manufacturing, Chitale and Gupta. McGraw Hill.	
REF	FERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Product Design and Development, Ulrich and Eppinger, McGraw Hill	2003
2	Project Management in New Product Development, Barkley B.T., Tata McGraw Hill.	2008
3	Product Management, Anandan C., McGraw Hill.	2009
4	Engineering Design Methods, Cross, Nigel, John Wiley and Sons.	1995
5	Product Design and Manufacture, Lindbeck, J.R., Prentice Hall of India.	1995

8ME4.2: COMPUTATIONAL FLUID DYNAMICS

3L+01	. ,	Marks: 100 m Hours: 3
UNIT	CONTENTS	CONTACT HOURS
	Introduction to Computational Fluid Dynamics and Principles of	110 0115
	Conservation : Conservation of mass, linear momentum: Navier-Stokes	
	equation, Conservation of Energy, General scalar transport equation,	
	Reynolds transport theorem,	4
	Classification of Partial Differential Equations and Physical	•
	Behaviour: Elliptic, parabolic and hyperbolic partial differential	
I	equations	2
	Approximate Solutions of Differential Equations: Error Minimization	
	Principles, Approximate solutions of differential equations, variational	
	approach, Weighted residual approach: trial function and weighting	
	function, Essential and natural boundary conditions, Least square	_
	method, Galerkin's method, Rayleigh-Ritz method	4
	Fundamentals of Discretization: Pre-processing, Solution, Post-	
	processing, Finite Element Method, Finite difference method, Well	
	posed boundary value problem, Conservativeness, Boundedness,	
	Transportiveness, Finite volume method (FVM), 1-D steady state heat	
II	conduction without and with constant source term	3
11	Finite Volume Method: FV Discretization of a 1-D steady state	
	diffusion type problem, Composite material with position dependent	
	thermal conductivity, Source term linearization, Implementation of	
	boundary conditions, 1-D unsteady state diffusion problems: implicit,	
	fully explicit and Crank-Nicholson scheme	4
	Solution of Systems of Linear Algebraic Equations: Solution	•
	techniques for systems of linear algebraic equations: Elimination,	
	Iteration and Gradient Search method, L-U decomposition technique,	
	Tridiagonal matrix algorithm (TDMA): Thomas algorithm	4
	Iteration methods: Generalized analysis of the iterative methods,	
III		
	Sufficient condition for convergence, Scarborough criteria of for	
	convergence Relaxation methods, Preferential characteristics of	
	iterative methods, Multigrid method, Line by line TDMA, Alternating	
	direction implicit method, Gradient search methods: Steepest descent	_
	method, Conjugate gradient method	4
	Discretization of Convection-Diffusion Equations: A Finite Volume	
	Approach: Central difference scheme, Upwind scheme, Exponential	
	scheme and Hybrid scheme, Power law scheme, Generalized	
	convection-diffusion formulation, The concept of false diffusion, QUICK	
IV	scheme.	5
	Discretization of Navier Stokes Equations: Discretization of the	
	Momentum Equation: Stream Function-Vorticity approach and	
	Primitive variable approach, Staggered grid and Collocated grid,	
	SIMPLE Algorithm, SIMPLER Algorithm	3
	Introduction to Turbulence Modeling: Vorticity transport equation,	
	Homogeneous turbulence and isotropic turbulence, Reynolds average	
	Navier stokes (RANS) equation, Necessity of turbulence modeling,	
	Turbulence model: Eddy viscosity, Mixing length, The κ-ε model, RNG	
v	κ-ε model, κ-ω model, Reynolds stress model (RSM),Large eddy	
	Simulation (LES), Direct numerical simulation (DNS)	4
	The basic structure of a CFD code: Pre-processor, Solver and Post-	•
	processor, User-defined-subroutines, Solution to some basic problems	
	in heat transfer and fluid flow	3
		<u>3</u> 40
	TOTAL	40

TEXT BOOK		
I LEAI DUUN		

1	Computational Fluid Dynamics, John Anderson, McGraw Hill Publication	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Computational Fluid Dynamics, Jiynan Tu, Butter Worth Henman.	1998
2	Computational Fluid and Heat Transfer, Anderson & Tannehill, Taylor &	1997
	Francis Publication.	
3	Computational Methods for Fluid Dynamics, Joel H. Ferziger, Springer	2009
	Publication.	
4	Computational Heat Transfer, Jaluria Y., Taylor and Francis Publication.	1996
5	Computational Heat Transfer and Fluid Flow, Murlidhar and T. Sunder	2011
	Rajan, Narosa Publications	

8ME4.3A: TOTAL QUALITY MANAGEMENT

B.Tech. (Mechanical) 8th semester Max. Marks: 100 3L+0T Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
I	Introduction to TQM: Definition, Basic approach, Guru's of TQM, TQM framework, benefits.	2
	Leadership: Characteristics of Quality Leadership, Leadership Concepts, The 7 Habits of Highly Effective People, The Deming Philosophy, The Role of TQM Leaders, Quality Council, Core Values, Concepts, and Framework, Quality Statements, Strategic Planning	
	Communications, Decision Making. Customer Satisfaction: Introduction, Customer Perception of Quality,	3
	Feedback, Using Customer Complaints, Service Quality, Translating Needs into Requirements, Customer Retention.	3
	Continuous Process Improvement: Introduction, Process, The Juran Trilogy, Improvement Strategies, Types of Problems PDSA Cycle, Problem-Solving Method, DMAIC, Kaizen, Reengineering.	3
II	Supplier Partnership: Principles of Customer/Supplier Relationship Partnering, Sourcing Supplier, Selection ,Supplier Certification Supplier Rating, Relationship Development.	2
	Performance Measures: Basic Concepts, Strategy, performance measure presentation, Cost of Quality, Malcolm Baldrige and Rajiv Gandhi National Quality Award, Balanced Score Card	3
	Lean Enterprise: Historical Review, Lean Fundamentals, Value Stream Map, Implementing Lean, Benefits.	3
III	Six Sigma: Statistical Aspects, Improvement Methodology, Organizational Structure Benefits.	3
	Benchmarking: Benchmarking Defined, Reasons to Benchmark, Process, deciding what to benchmark, Pitfalls and Criticisms.	2
	Quality Management Systems: Benefits of ISO Registration, ISO Series of Standards, Sector-specific Standards, ISO 9001 Requirements, Implementation, Documentation, Writing the Documents, Internal Audits, Registration.	2
IV	Environmental Management Systems: ISO 14000 Series Standards, Concepts of ISO 14001, ISO 14001, Requirements, Benefits, Integrating QMS and EMS. Other EMS Systems, Relationship to Health and Safety	2
	Quality Function Deployment: The QFD Team, Benefits, the voice of the Customer, Organization of Information, House of Quality, Building a House of Quality, QFD Process.	2
	Total Productive Maintenance: The Plan, Learning the New Philosophy, Promoting the Philosophy, Training, Improvement Needs, Goal,	2

	Developing Plans, Autonomous Work Groups		
	Affinity Diagram, Interrelationship Digraph, Tree Diagram, Matrix		
	Diagram, Prioritization Matrices, Process Decision Program Chart,		
	Activity Network Diagram	2	
V	V Experimental Design: Introduction, Basic Statistics, Hypothesis, t Test F Test. One Factor at a Time Orthogonal Design, Point and Interval		
	Estimate, Two Factors Full Factorials.	3	
	Taguchi's Quality Engineering: Introduction, Loss Function,		
	Orthogonal Arrays, Signal-to-Noise Ratio, Parameter Design, Tolerance		
	Design, Case study	3	
	TOTAL	40	

TEX	TEXT BOOK	
1	D. H. Besterfield, G. H Besterfield, Hemant Urdhwareshe, Total Quality Management: Revised Third Edition, Pearson Higher Education	
REF	REFERENCE BOOKS	
SN	Name of Authors /Books /Publisher	
1	Total Quality Management: text with cases, John S Oakland, Butterworth-Heinemann	2003
2	Total Quality Management for Engineers, Zaire, M., Wood Head Publishing Ltd.	1991
3	Total Quality Control, Feigenbaum. Armand V., McGraw Hill	1991
4	The Management and Control of Quality,(5th Edition), James R.Evans and William M.Lidsay, South-Western (Thomson Learning)	2002
5		

8ME5A: CAM LAB.

B.Tech. (Mechanical) 8th Semester Max. Marks: 75 0L+0T+2P Exam Hours: 2

SN	NAME OF EXPERIMENT	CONTACT HOURS
1	To prepare part programming for plain turning operation.	
2	To prepare part programming for turning operation in absolute mode.	
3	To prepare part program in inch mode for plain turning operation.	
4	To prepare part program for taper turning operation.	
5	To prepare part program for turning operations using turning cycle.	
6	To prepare part program for threading operation.	
7	To prepare part program for slot milling operation.	
8	To prepare part program for gear cutting operation.	
9	To prepare part program for gear cutting using mill cycle.	
10	To prepare part program for drilling operation.	
11	To prepare part program for multiple drilling operation in Z-axis.	
12	To prepare part program for multiple drilling in X-axis.	
13	To prepare part program for multiple drilling in X and Z axis using	
	drilling cycle.	

8ME6A: CAD LAB.

B.Te	B.Tech. (Mechanical) 8th Semester Max	
OL+O	OL+OT+3P Exam Ho	
SN	NAME OF EXPERIMENT	CONTACT

		HOURS
1	Introduction and different features of the CAD Software.	
2	2-D Drafting.	
3	3-D Modeling.	
4	3-D Advanced Modeling.	
5	Assembly modeling.	
6	Feature Modification and Manipulation	
7	Detailing.	
8	Sheet Metal Operations.	
9	Surface Modeling	
10	One Dimensional problems of Finite Element Method	
	Note: (These exercises may be performed by any of the following	
	Advanced CAD Software such as Pro E /Unigraphics/ AotoCAD Inventor)	

8ME7A: INDUSTRIAL ENGINEERING LAB-II

B.Tech. (Mechanical) 8th Semester 0L+0T+2P

	f = = =	
SN	NAME OF EXPERIMENT	CONTACT HOURS
1	Determination of time standard for a given job using stopwatch timestudy.	
2	Preparation of flow process chart, operation process chart and man- machine charts for an existing setup and development of an improved process.	
3	Study of existing layout of a workstation with respect to controls and displays and suggesting improved design from ergonomic viewpoint.	
4	To carry out a work sampling study.	
5	To conduct process capability study for a machine in the workshop.	
6	To design a sampling scheme based on OC curve.	
7	To conduct Shewart's experiments on known population	
8	Generation of random numbers for system simulation such as facility	
	planning, job shop scheduling etc.	

Max. Marks: 75

Exam Hours: 2